
User manual
UM EN PLCNEXT TECHNOLOGY 2019.0 LTS

PLCnext Technology

2019-07-31

PHOENIX CONTACT GmbH & Co. KG • Flachsmarktstraße 8 • 32825 Blomberg • Germany

phoenixcontact.com

1
0

8
6

6
4

_
e

n
_

0
3

PLCnext Technology

Designation Version

PLCnext Technology firmware 2019.0 LTS

Designation Order No.

AXC F 2152 2404267

AXC F 2152 STARTERKIT 1046568

RFC 4072S 1051328

User manual

This user manual is valid for:

UM EN PLCNEXT TECHNOLOGY 2019.0 LTS, Revision 03

Table of contents
Table of contents

1 General information ...7

1.1 Identification of warning notes ...7

1.2 Qualification of users ...7

1.3 Introduction..8

1.4 Information about this document..9

1.5 Trademarks/licensing information..9

1.6 Safety notes...10

1.7 PLCnext Technology product range ..11

2 Structure of PLCnext Technology ..12

2.1 Internal user components ..14

2.2 External user components ...15

2.3 System manager ...16

2.4 PLC manager ..16

2.5 Managing of components ..16

2.6 Configuration files..17

2.6.1 acf, esm, gds configuration files ...17

2.6.2 .tic file ...18

2.6.3 Metafiles ..18

2.6.4 Generating configuration files with PLCnext Engineer20

2.6.5 Manual configuration ..20

2.7 ESM (Execution and Synchronization Manager) ...21

2.7.1 Task configuration with PLCnext Engineer ...22

2.7.2 Task configuration via configuration files ...23

2.8 GDS (Global Data Space) ...27

2.8.1 Port-based communication ..27

2.8.2 Fieldbus connection ...29

2.8.3 GDS configuration with PLCnext Engineer ...33

2.8.4 GDS configuration using configuration files ..34

2.8.5 Supported data types ...38

2.9 RSC (Remote Service Calls) ...42

2.10 PLCnext embedded OPC UA server (eUA) ...42

2.10.1 OPC UA ...42

2.10.2 Configuration ...42

2.10.3 OPC UA file access ..44

2.10.4 Alarms ..45

2.10.5 Subscriptions ...45

2.10.6 “GlobalDataSpace” namespace ...45

2.10.7 Device Integration (DI) namespace ..47
108664_en_03 PHOENIX CONTACT 3 / 202

PLCNEXT TECHNOLOGY
2.10.8 Data types ..47

2.10.9 UA server endpoints ...47

2.10.10 Encryption algorithms ..48

2.10.11 Ethernet ports at the controller ...48

2.10.12 Disabling user authentication ...48

2.11 Alarms ...48

2.11.1 IEC 61131 alarm function blocks ..49

2.11.2 Alarms in C++ programs ..53

2.11.3 OPC UA server ..55

2.12 Notification manager..56

2.12.1 Notifications of the PLCnext Technology firmware56

2.13 Notification logger..59

2.13.1 Displaying notifications in the PLCnext Engineer cockpit59

2.13.2 Receiving notifications ...59

2.13.3 Configuring the notification logger ..59

2.13.4 Saving notifications ..61

2.13.5 Querying notifications ..61

2.13.6 Permissions ...63

2.14 Operating system ..63

2.14.1 Directories of the firmware components in the file system63

2.14.2 System time ...65

2.14.3 OpenVPN™ client ..66

2.14.4 IPsec (strongSwan) ..67

2.14.5 Text editors ..67

2.14.6 User rights ..67

2.14.7 Root rights ..69

2.14.8 Linux scripts of the PLCnext Technology firmware71

3 Web-based management (WBM) ..73

3.1 Establishing a connection to WBM ..73

3.2 Licensing information on open source software...75

3.3 Changing the language..75

3.4 Login..75

3.5 Start page – areas and functions ...76

3.6 “Information” area ..77

3.6.1 “General Data” page ..77

3.7 “Diagnostics” area ...78

3.7.1 “PROFINET” page ..78

3.8 “Configuration” area...81

3.8.1 “PROFICLOUD” page ..81

3.9 “Security” area ...82

3.9.1 “User Authentication” page ..82

3.9.2 “Certificate Authentication” page ..87
4 / 202 PHOENIX CONTACT 108664_en_03

Table of contents
3.9.3 “Firewall” page ...95

3.10 “Administration” area ...105

3.10.1 “Firmware Update” page ..105

4 Transferring variable values to the PROFICLOUD ...108

4.1 Creating variables as OUT ports..108

4.2 Preparing the controller for PROFICLOUD ..109

4.3 Configuring PROFICLOUD..109

4.4 Displaying an overview of the PROFICLOUD device metrics112

4.5 Displaying the metrics graphically in Grafana ..113

5 Structure of a C++ program ...116

5.1 “ILibrary” and “LibraryBase”...116

5.2 “IComponent” and “ComponentBase”..117

5.2.1 “IProgramComponent” and “IProgramProvider”119

5.2.2 “IProgram” and “ProgramBase” ..120

5.2.3 “IControllerComponent” ...121

5.3 Several component types in the same library ..121

5.4 PLM (Program Library Manager) ...122

5.4.1 Functions ...122

5.4.2 Configuration ...123

5.5 ACF (Application Component Framework) ..123

5.5.1 Libraries ...123

5.5.2 Components ..124

5.5.3 Configuration ...125

5.6 Common classes ...126

5.6.1 Threading ...127

5.6.2 “Ipc” (inter-process communication) ..128

5.6.3 “Chrono” ...128

5.6.4 “Io” ...128

5.6.5 “Net” ...129

5.6.6 “Runtime” ...129

5.7 “Template Loggable” ...129

5.8 Using RSC services...131

5.8.1 RSC Axioline services ..132

5.8.2 RSC PROFINET services ..133

5.8.3 RSC device interface services ...135

5.8.4 RSC GDS services ...140

5.9 Notifications...147

6 Creating programs with C++ ..151

6.1 PLCnCLI (PLCnext Command Line Interface) ...151
108664_en_03 PHOENIX CONTACT 5 / 202

PLCNEXT TECHNOLOGY
6.1.1 System requirements ...151

6.1.2 Installing PLCnCLI ...152

6.1.3 Installing SDKs ...152

6.1.4 Functions of the PLCnCLI ..153

6.2 Eclipse® add-in...156

6.2.1 Requirements ...156

6.2.2 Installing/updating/uninstalling the Eclipse® add-in156

6.2.3 Creating a new C++ project in Eclipse® ..159

6.2.4 Creating a program ..162

6.2.5 Compiling the project ...163

6.3 Remote debugging ..165

7 Creating function blocks and functions with C# ..166

7.1 Installing the Visual Studio® extension..167

7.1.1 System requirements ...167

7.1.2 Installation ..168

7.2 Creating a firmware library...169

7.3 Remote debugging of C# code with Visual Studio® ..172

7.3.1 Disabling user authentication ...172

7.3.2 Opening a port and deactivating TLS (Transport Layer Securi-

ty) ...173

7.3.3 Debug mode ..174

7.4 Supported functions of the PLCnext Technology C# programming system178

7.4.1 C# language functions ...178

7.4.2 Base class libraries ..179

7.4.3 eCLR runtime functions ..181

7.5 Supported data types ..182

8 Matlab® Simulink® ...183

9 Importing libraries into PLCnext Engineer ..184

A Appendix ..191

A 1 Available data types...191

A 2 PLCnext Technology naming conventions...193

A 3 Explanation of terms ..195

A 4 PROFINET diagnostic code in WBM ...200
6 / 202 PHOENIX CONTACT 108664_en_03

General information
1 General information

Read this user manual carefully and keep it for future reference.

1.1 Identification of warning notes

1.2 Qualification of users

The use of products described in this user manual is oriented exclusively to qualified appli-

cation programmers and software engineers. The users must be familiar with the relevant

safety concepts of automation technology as well as applicable standards and other regu-

lations.

For programming of applications, familiarity with C/C++, IEC 61131-3 or MATLAB
®

 Sim-

ulink
®

 is assumed.

This symbol indicates hazards that could lead to personal injury.

There are three signal words indicating the severity of a potential injury.

DANGER

Indicates a hazard with a high risk level. If this hazardous situation is not

avoided, it will result in death or serious injury.

WARNING

Indicates a hazard with a medium risk level. If this hazardous situation is not

avoided, it could result in death or serious injury.

CAUTION

Indicates a hazard with a low risk level. If this hazardous situation is not avoided,

it could result in minor or moderate injury.

This symbol together with the NOTE signal word warns the reader of actions

that might cause property damage or a malfunction.

Here you will find additional information or detailed sources of information.
108664_en_03 PHOENIX CONTACT 7 / 202

PLCNEXT TECHNOLOGY
1.3 Introduction

PLCnext Technology

Demands on automation technology are increasing due to digitization in the industrial sec-

tor. Flexibility, networking, exchange of information, the “Internet of Things” are gaining ever

more importance for modern, flexible and efficient production. Automation systems and

their controllers must become more adaptable and must be able to react ever faster to new

requirements.

To meet the changing demands of industry, Phoenix Contact developed

PLCnext Technology as the basis for a new, open control platform. PLCnext Technology

combines all of the communication properties and advantages of the traditional PLC world

with the openness and flexibility of smart devices. Both the control platform and the cloud

architecture are based on open-source components which are undergoing continuous,

manufacturer-neutral development.

Previously, programming of PLC applications was only possible in the IEC 61131-3 pro-

gramming languages. PLCnext Technology allows developers from various corporate ar-

eas, technology disciplines and generations to work in parallel with and yet independently

of each other on one automation application. And they can do that in the programming en-

vironment to which they are accustomed. Whether with established and proven program-

ming tools such as Microsoft
®

 Visual Studio
®

, Eclipse
®

, MATLAB
®

 Simulink
®

 or

PLCnext Engineer. The programming code can be created in the traditional way in accor-

dance with IEC 61131-3, and in C/C++ or Simulink
®

 code.

PLCnext Technology connects and combines traditional PLC programming and high-level

language programming. Thus, different programming systems can be used on one plat-

form.

PROFICLOUD, a professional cloud solution and part of PLCnext Technology, enables you

to not only collect and process data directly on the controller, but to also have it transferred

to the cloud. Therefore, data is more easily available and it can be retrieved and used re-

gardless of the location and time. All performance and energy data of your system is avail-

able anywhere and at any time. Cloud-based services are also available, e.g., for data anal-

ysis, predictive maintenance, etc.

The open PLCnext Technology platform enables you to extend the benefits of conventional

PLCs and provides you with a basis for cutting-edge automation capable of meeting all of

the demands of the IoT world.

Advantages at a glance

– Accelerated startup in comparison to conventional control platforms because several

developers can work on one program in parallel with and yet independently of each oth-

er in different programming languages

– Convenient engineering, thanks to the use of established programming tools such as

PLCnext Engineer, MATLAB
®

 Simulink
®

, Eclipse
®

, or Microsoft
®

 Visual Studio
®

– Reliable operation because determinism, real-time behavior and cycle-consistent data

exchange are assured regardless of the programming language

– Cost-efficient and flexible, thanks to the use of freely available software from the open

source community

– Future-proof and adaptable, because new functions and future technologies can be in-

tegrated quickly and easily
8 / 202 PHOENIX CONTACT 108664_en_03

General information
Creating programs with C++

With PLCnext Technology, you can create programs in C++ and import these into

PLCnext Engineer. There, you can instantiate the programs and use them in the same way

as conventional IEC 61131-3 programs in real time. Consistent data exchange with pro-

grams that were created with other high-level languages or IEC 61131-3 is ensured via the

ports of the GDS. This way, the programs can run together in the same tasks.

Phoenix Contact provides an add-in for Eclipse, an SDK (Software Development Kit), as

well as a LibraryBuilder. These tools support you in the use of your C++ program on a con-

troller with PLCnext Technology. The Eclipse
®

 development environment is particularly

suitable because it can be used under both Windows
®

 and Linux, and is commonly used in

C++ programming (see Section “Creating programs with C++” on page 151).

Creating function blocks and functions with C#

Create function blocks and functions in C# with Microsoft
®

 Visual Studio
®

. You can use an

extension from Phoenix Contact to convert them into libraries, import them into

PLCnext Engineer, and use them for your programming. The function blocks or functions

can be called up in PLCnext Engineer, e.g., in the ST (Structured Text) or LD (Ladder Dia-

gram) code worksheet, and used for your programming.

The IEC 61131 runtime system of the controller (eCLR) is a .Net-based runtime that sup-

ports both IEC 61131-3 and C# code. For this reason, the Visual Studio
®

 development en-

vironment can be used for C# (see Section “Creating function blocks and functions with C#”

on page 166).

1.4 Information about this document

This document describes the PLCnext Technology control platform. It describes the system

and its components and provides instructions on creating, using and managing

PLCnext Technology applications.

Detailed information on PLCnext Technology is available in the PLCnext Community at plc-

next-community.net.

1.5 Trademarks/licensing information

Trademarks

All product names used are trademarks of the respective organizations.

– MATLAB
®

 and Simulink
®

 are registered trademarks of The MathWorks, Inc.

– Eclipse
®

 is a trademark of the Eclipse Foundation.

– Microsoft
®

 and Visual Studio
®

 are trademarks of the Microsoft Corporation.

Licensing information on open source software

PLCnext controllers work with a Linux operating system.

All license information can be called using the “Legal Information” link on every page of web-

based management (WBM) for controllers:

• Click on the “Legal Information” link on the bottom left of the WBM page.

Licenses for all of the open source software used are shown.
108664_en_03 PHOENIX CONTACT 9 / 202

http://www.plcnext-community.net
http://www.plcnext-community.net

PLCNEXT TECHNOLOGY
Further information on WBM of the respective controller is available in the corresponding

user manual. The user manual can be downloaded from the product page at phoenixcon-

tact.net/products.

1.6 Safety notes

NOTE: Risk of unauthorized network access

Connecting devices to a network via Ethernet always entails the risk of unauthorized ac-

cess to the network.

Therefore, please check for the option of disabling active communication channels in your

application (for instance SNMP, FTP, BootP, DCP, HTTP, HTTPS, etc.) or setting pass-

words to prevent third parties from accessing the controller without authorization and

modifying the system.

Due to the communication interfaces of the controller, the controller should not be used in

safety-critical applications unless additional security appliances are used.

Please take additional protective measures in accordance with the IT security require-

ments and the standards applicable to your application (e.g., virtual networks (VPN) for

remote maintenance access, firewalls, etc.) for protection against unauthorized network

access.

On first request, you shall release Phoenix Contact and the companies associated with

Phoenix Contact GmbH & Co. KG, Flachsmarktstrasse 8, 32825 Blomberg in accordance

with §§15ff.AktG (German Stock Corporation Act), hereinafter collectively referred to as

“Phoenix Contact”, from all third-party claims made due to improper use.

For the protection of networks for remote maintenance via VPN, Phoenix Contact offers

the mGuard product series security appliances; further information on this is available in

the latest Phoenix Contact catalog (phoenixcontact.net/products).

Additional measures for protection against unauthorized network access are listed in the

AH EN INDUSTRIAL SECURITY application note. The application note can be download-

ed at phoenixcontact.net/products.

NOTE: Risk of unauthorized access to devices

Devices with PLCnext Technology do not feature mechanical access protection and are

therefore at risk of manipulation. Unauthorized access can occur via the following device

interfaces, for example:

– USB ports

– PCI Express interfaces

– Axioline bus

– SC card slot and the SD card contained therein

– Device HMI (touch panel as well as buttons, switches, etc.)

– Ethernet interfaces

To prevent damage due to authorized access, make sure that only authorized access is

possible.

• Protect the interfaces by installing the devices in a control cabinet.

• Secure the control cabinet with a lock.

• Make sure that only authorized persons have access to the control cabinet key.

• Run cables in such a way that they are protected against unauthorized access.
10 / 202 PHOENIX CONTACT 108664_en_03

http://www.phoenixcontact.net/products
http://phoenixcontact.net/products
http://www.phoenixcontact.net/products
http://www.phoenixcontact.net/products

General information
1.7 PLCnext Technology product range

Currently, the following products are available with PLCnext Technology:

Modifications to hardware and firmware of the devices are not permitted.

Incorrect operation or modifications to the devices can endanger your safety or damage

the devices. Do not repair the devices yourself. If the devices are defective, please con-

tact Phoenix Contact.

Description Type Order No.

PLCnext Control for the direct control of Axioline F I/Os. With two

Ethernet interfaces. Complete with connector and bus base module.

AXC F 2152 2404267

PLCnext Control with 4 x 10/100/1000 Ethernet, PROFINET control-

ler with integrated PROFIsafe safety controller, PROFINET device,

IP20 degree of protection, pluggable parameterization memory

RFC 4072S 1051328

AXC F 2152 starter kit including AXC F 2152 PLCnext Control, volt-

age switch, digital input and output module, analog input and output

module, potentiometer, switch module, PROFICLOUD license, as

well as a power supply unit, patch cable, country-specific adapter

plugs, and documentation.

AXC F 2152 STARTERKIT 1046568

Engineering software platform for Phoenix Contact automation con-

trollers. PLCnext Engineer is IEC 61131-3-compliant and its func-

tions can be extended using add-ins.

PLCNEXT ENGINEER 1046008

Software add-on for the integration and execution of Matlab Simulink

models on Remote Field and Axioline controllers

PC WORX TARGET FOR SIM-

ULINK

2400041

Ensure that you always use the latest firmware and documentation. The latest firmware

versions and documentation can be downloaded at phoenixcontact.net/products.

Software packages required for programming in C++ with Eclipse
®

 or in C# with

Visual Studio
®

 can be downloaded from the download area for the AXC F 2152 control-

ler.

Sample projects and the associated documentation can be downloaded at

https://github.com/plcnext.
108664_en_03 PHOENIX CONTACT 11 / 202

http://www.phoenixcontact.net/products
http://www.phoenixcontact.net/products

PLCNEXT TECHNOLOGY
2 Structure of PLCnext Technology

Core components PLCnext Technology is an open firmware platform executed on a Linux operating system

with real-time patch. Different firmware components forming the core functions are called

core components. These core components are a fixed part of the PLCnext Technology firm-

ware. They cannot be modified. The core components are divided into the following groups:

– Middleware

– I/O components

– Service components

– System components

Figure 2-1 Core components of the PLCnext Technology firmware

Middleware The middleware section decouples the PLCnext Technology firmware from the operating

system. The GDS (Global Data Space) is part of the middleware and is responsible for a

central function of PLCnext Technology. It enables consistent data exchange between dif-

ferent real-time components. For additional information on the GDS, please refer to Section

“GDS (Global Data Space)” on page 27.

I/O components /

fieldbus manager

The fieldbus manager connects the implemented fieldbus for the input and output of pro-

cess data with PLCnext Technology. The following fieldbuses are supported (depending on

the device):

– PROFINET controller

– PROFINET device

– Axioline F master (local bus)

– INTERBUS (with AXC F 2152 and AXC F IL Adapt)

System Components

Service Components

IO

Components

Middleware (GDS)

ESM / Real-time

Linux Operating System
12 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Service components The service components provide access to the ESM (Execution and Synchronization Man-

ager), GDS (Global Data Space), and to the following system components:

– OPC UA server

– Proficloud gateway

– Web-based management

– PLCnext Engineer HMI (HTML5 web visualization)

– Accessible via OS

– DCP

– SFTP

– VPN

– SSH

– NTP

– Trace controller

System components In the system components, all the basic functions of PLCnext Technology are implemented.

– System manager and PLC manager

These components load all the other system components and monitor the stability of

the system.

– ESM (Execution and Synchronization Manager)

The ESM enables IEC 61131-3, C++ and Matlab
®

 Simulink
®

 programs to be executed

in real time. When creating applications, programming languages can be combined in

any way. For additional information on the ESM, please refer to Section “ESM (Execu-

tion and Synchronization Manager)” on page 21.

– User manager

The user manager extends the standard Linux user management function. The differ-

ent user roles are managed here. You can only execute operations in the

PLCnext Technology firmware with a defined user role. You can select one or more

user roles containing different permissions for each user.

– eCLR

ProConOS embedded CLR is the open IEC 61131 control runtime system for different

automation tasks.

Real-time user programs User programs are not supplied as a standard with the PLCnext Technology firmware; they

are created by the user. These user-defined programs can be created in conventional pro-

gramming languages in accordance with IEC 61131-3, and also in C++ or Matlab
®

 Sim-

ulink
®

. It is also possible to combine different programming languages.

The easiest way to use PLCnext Technology is to create user programs in programming

languages in accordance with IEC 61131-3, in C++ or using Matlab
®

 Simulink
®

, and to ex-

ecute these in the real-time environment of the ESM. The user programs are downloaded

to the controller and, after a cold restart of the device, are executed by the firmware.
108664_en_03 PHOENIX CONTACT 13 / 202

PLCNEXT TECHNOLOGY
The IN and OUT ports of the GDS guarantee data consistency and ensure seamless data

exchange between tasks and programs.

Figure 2-2 Task handling with ESM and GDS

2.1 Internal user components

Users can add their own components, so-called internal user components, to

PLCnext Technology. The system manager loads and monitors these internal user compo-

nents (see Section 2.3 “System manager”). All available PLCnext Technology APIs can be

used:

– RSC (Remote Service Call): each component (system, service, I/O components) fea-

tures a selection of individual services that can be called and used via RSC (see Sec-

tion “RSC (Remote Service Calls)” on page 42).

– Component interface: the firmware calls the implemented functions of the component

interface at certain times, e.g., during program startup.

– Data access: read and write access to the GDS (Global Data Space)

ESM
Task 1 (1 ms)

GDS

Task 2 (3 ms) Task 3 (10 ms)

PROFINET Axioline …

Prg 1 IEC 61131-3 Prg 2 Simulink Prg 3 C++

Prg 4 C++

Prg 5 IEC 61131-3
14 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
– Common classes: easy retrieval of system functions, e.g., file operations, socket ser-

vices, threading (see Section “Common classes” on page 126).

Figure 2-3 PLCnext Technology – internal user components

2.2 External user components

Internal user components are used to add new, internal functions. It can also be necessary

to incorporate external processes. This may be the case if, for example, extensive software

components such as Java
®

 Frameworks or .Net Core
®

 are used. These can be integrated

as external user components. They can be started along with the PLCnext Technology

framework.

Figure 2-4 PLCnext Technology - external user components

Middleware (GDS)

Internal User Components

(Non-Realtime)
• e.g. libmodbus, MQTT

• …

PLCnext Technology

Linux Operating System (Enhanced Mode)

System Components

Service Components

IO

Components

ESM / Real-time

Middleware (GDS)

Internal User Components

(Non-Realtime)
• e.g. libmodbus, MQTT

• …

External User Components
• Complete Frameworks e.g.

OpenJDK, .NETCore, Python

Runtime, Node.js, …

PLCnext Technology

Linux Operating System (Enhanced Mode)

System Components

Service Components

IO

Components

ESM / Real-time
108664_en_03 PHOENIX CONTACT 15 / 202

PLCNEXT TECHNOLOGY
2.3 System manager

PLCnext Technology is an open platform. This means that as a user you can integrate your

own components and programs. During firmware startup, the system manager ensures that

all integrated components and programs are configured and started in the right order. Here,

all system processes are generated and internal user components are supplemented. A

system component is always started, configured and shut down by the system manager.

2.4 PLC manager

The PLC manager is a firmware component that loads the necessary PLC program code

into the memory and boots up or shuts down the programs. The program code can exist of

an IEC 61131-3 program that was created and sent using PLCnext Engineer. The code can

also be created in C++ or Matlab
®

 Simulink
®

. C++ and Matlab
®

 Simulink
®

 programs are

available on the controller as program code libraries (shared object, *.so). Configuration

files on the controller are used to determine which libraries the PLC manager is to load and

which programs in these libraries it is to instantiate. The PLC manager is therefore superor-

dinate to the code. It controls boot up and shut down of the real-time system (ESM) as well

as stopping and starting of data exchange via fieldbuses. If the controller is in the “stop”

state, the real-time tasks monitored by the ESM are not executed. The signals of the sen-

sors connected to the fieldbus are no longer read as inputs, and the output signals are no

longer sent to the connected actuators.

The controller can be started in three different modes:

– Cold restart:

During a cold restart, all data is reset.

– Warm restart:

During a warm restart, all data is reset and all remanent data is restored (system start).

Note: In firmware version 1.x, remanent data is only located in the eCLR/IEC program-

ming environment.

– Hot restart:

During a hot restart, the data is neither reset nor restored. All variable values are re-

tained.

2.5 Managing of components

PLCnext Technology is based on components that are included via the “IComponentInter-

face” interface (see Section ““IComponent” and “ComponentBase”” on page 117).

Application Control

Framework

The ACF (Application Control Framework) is a part of the system manager and manages

the internal user components. The ACF is a framework that enables component-based plat-

form development and the configurative composition of the firmware for the devices. It en-

ables the dynamic and configurative integration of user functions into the system. The com-

ponents managed by the ACF are thus firmware components and user components that are

executed independently of the PLC program. The ACF generates the components when

booting the firmware.

For additional information on the ACF, please refer to Section “ACF (Application Compo-

nent Framework)” on page 123.
16 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
PLC manager /

Program Library Manager

One firmware component that is managed by the ACF is the PLC manager (see “PLC man-

ager” on page 16). It manages the PLC program (real-time user program). The associated

components and libraries that make these user programs available are managed by the

PLC manager via the PLM (Program Library Manager, see 5.4 on page 122). The configu-

ration is executed with a file referenced by /opt/plcnext/projects/Default/Plc/Plm/Plm.config.

The PLC manager generates the components when loading the program.

For additional information on the PLC manager and Program Library Manager, please refer

to Sections “PLC manager” on page 16 and ““IComponent” and “ComponentBase”” on

page 117.

Delimitation of ACF and

PLM

– ACF and PLM use the same ILibrary and IComponent interface (see Sections ““ILi-

brary” and “LibraryBase”” on page 116 and ““IComponent” and “ComponentBase”” on

page 117).

– ACF and PLM use the same format for configuration files (see Section “Configuration

files” on page 17).

– Only components that are managed via PLM can make programs available that can be

instantiated in ESM tasks (IProgramProvider, see Section 5.2.1 on page 119).

– Only components that are managed via the PLM can be stopped, modified and started

up via download from PLCnext Engineer. This is also the case for ESM tasks and the

programs instantiated therein.

– For components that are managed via the ACF, the firmware must be stopped, started

or rebooted.

– Components that are managed via the ACF are retained, even if the PLC program is

shut down, deleted or booted.

2.6 Configuration files

With PLCnext Technology, you can load programs and program instances onto the control-

ler even without the PLCnext Engineer software. You can, for example, create a program in

Eclipse
®

 with C++ and transfer it directly to the controller. All of the important and necessary

settings can be configured directly in the configuration files on the controller. The file system

of the controller is accessed via the SFTP protocol. Use a suitable SFTP client software for

this, e.g., WinSCP. The configuration files are XML files. You can edit them using an editor

of your choice. The configuration files are imported following the boot procedure of the

PLCnext Technology firmware. If there are no configuration errors in the configuration files,

the components and program instances are subsequently executed by the ESM.

When PLCnext Engineer is used, all configuration files are created by PLCnext Engineer

and downloaded to the controller.

2.6.1 acf, esm, gds configuration files

acf.config The acf.config configuration file contains information on the library, component and pro-

gram instances, as well as processes of shared objects (C++ programs).

The information is required by the ESM in order to load shared objects and to execute com-

ponent instances or programs.

There are two ways to instantiate components:

– Included in Default.acf.config (projects/Default/Default.acf.config)

– Included in Plm.config (projects/Plc/Plm/Plm.config)
108664_en_03 PHOENIX CONTACT 17 / 202

PLCNEXT TECHNOLOGY
esm.config The esm.config configuration file contains the task configuration, the instantiation of pro-

grams, and assignment to a processor core (one ESM per processor core). For additional

information, please refer to Section “Task configuration via configuration files” on page 23.

gds.config The gds.config configuration file contains the port definition as well as assignment of IN and

OUT ports. For additional information, please refer to Section “GDS configuration using

configuration files” on page 34.

2.6.2 .tic file

The .tic configuration file contains information on the bus configuration with the associated

I/O process data of the IN and OUT ports.

2.6.3 Metafiles

Metadata describes classes and types of components and programs that were created in a

PLCnext Technology application. They are required for using the program in

PLCnext Engineer.

The metafile for the library (*.libmeta) contains links to the metafiles for the incorporated

components (*.compmeta). These, in turn, link to the metafiles of the connected programs

(*.progmeta). Configuration of the GDS data ports (IN or OUT ports) is defined in the *.prog-

meta file.

When the PLCnCLI (PLCnext Command Line Interface, see Section “PLCnCLI (PLCnext

Command Line Interface)” on page 151) creates the C++ project, the *.compmeta, *.libmeta

and *.progmeta metafiles are created automatically. The files are interlinked, as shown in

Figure 2-5.

Figure 2-5 Overview of the metafiles

Phoenix Contact recommends creating the .tic files with the PLCnext Engineer software.

*.libmeta *.compmeta *.progmetalink

Create Component

link

ComponentIProgramProvider ProgramIProgram

describes describes

Library

*.so (Code)

describes

IN-/OUT-Ports

Code Code
18 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
The LibraryBuilder combines the metadata and the code (*.so) into a library. This can be im-

ported into PLCnext Engineer and used in the same way as an IEC 61131-3 program. Tasks

and flow of data are configured directly in PLCnext Engineer. The PLCnCLI (see Section

“Functions of the PLCnCLI” on page 153) generates the metafiles.

Example of a component list and a shared object (*.so) in the *.libmeta metafile:

<?xml version="1.0" encoding="utf-8"?>
<MetaConfigurationDocument

xmlns="http://www.phoenixcontact.com/schema/metaconfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
schemaVersion="2.0">

<Library name="CPP_Counter" applicationDomain="CPLUSPLUS" >

<File path="libCPP_Counter.so" checksum="_TODO_" />

<!-- Included components in this library -->
<ComponentIncludes>

<Include path="CPP_Counter_C/CPP_Counter_C.compmeta" />
</ComponentIncludes>

</Library>

</MetaConfigurationDocument>

Example of a program list in the *.compmeta metafile:

<?xml version="1.0" encoding="utf-8"?>
<MetaConfigurationDocument

xmlns="http://www.phoenixcontact.com/schema/metaconfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
schemaVersion="2.0">

<Component type="CPP_Counter_C" >

<!-- List of programs referenced in this component -->
<ProgramIncludes>

<Include path="CPP_Counter_P/CPP_Counter_P.progmeta" />
</ProgramIncludes>

<!-- List of component ports -->
<Ports>

<Port name="IP_CppEnable_bit" type="boolean" dimensions="1" attributes="Input|OpcUa" />
<Port name="IP_CppSwitches_uint8" type="uint8" dimensions="1" attributes="Input|Ehmi"/>
<Port name="OP_CppCounter_uint8" type="uint8" dimensions="1" attributes="Output"/>

</Ports>
-->

</Component>

</MetaConfigurationDocument>
108664_en_03 PHOENIX CONTACT 19 / 202

PLCNEXT TECHNOLOGY
Example of the definition of IN and OUT ports in the *.progmeta metafile:

<?xml version="1.0" encoding="utf-8"?>
<MetaConfigurationDocument

xmlns="http://www.phoenixcontact.com/schema/metaconfig"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
schemaVersion="2.0">

<Program type="CPP_Counter_P" >

<Ports>
<Port name="IP_CppEnable_bit" type="boolean" dimensions="1" attributes="Input|OpcUa" />
<Port name="IP_CppSwitches_uint8" type="uint8" dimensions="1" attributes="Input|Ehmi"/>
<Port name="OP_CppCounter_uint8" type="uint8" dimensions="1" attributes="Output"/>

</Ports>

</Program>

</MetaConfigurationDocument>

2.6.4 Generating configuration files with PLCnext Engineer

The following description applies for all three *.config types (acf.config, esm.config,

gds.config). The configuration files are automatically created when the PLCnext Engineer

software is used. During the download, they are saved to the controller in the respective

folder (e.g., /opt/plcnext/projects/PCWE/Esm for the PCWE.esm.config file) in the controller

file system. This folder is intended for the download from PLCnext Engineer. The PCWE

folder is automatically created and managed by PLCnext Engineer. Do not store any

other files here because PLCnext Engineer completely deletes this folder prior to

the download. When the configuration in PLCnext Engineer changes and the project is

once again downloaded to the controller, the previous configuration files are overwritten.

Manual changes are also lost.

2.6.5 Manual configuration

To make manual changes to the configuration files or to create new configuration files, you

can copy the files generated by PLCnext Engineer and rename them. You can then manu-

ally configure these files. To prevent overwriting your own configuration files in the “PCWE”

folder when downloading the project again from PLCnext Engineer, proceed as follows:

• Under /opt/plcnext/projects/ in the file system of the controller, create a new folder and

name it accordingly. E.g., /opt/plcnext/projects/Example/

• Save the files to this folder.

• Include the configuration files via the Include path command (see example below).

The folder can be used for saving additional configuration files and for the manual, configu-

rative extension of the components.

The Include mechanism is used to state which configuration files are to be used for the

configuration. If files that are not in the folder used for inclusion are to be included, the re-

spective path has to be specified. In the following example, all files that are in the same di-

rectory as the “Default.gds.config” file are included, i.e., /opt/plcnext/projects/De-

fault/Plc/GDS (<Include path=“*.gds.config” />). If you want to include all the config

files that are in the respective folder, replace the specific file name with an * (e.g.,

*.gds.config). This results in all files with the same file extension being included.
20 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Example: Include path:

<Includes>
<Include path=“*.gds.config“ />
<Include path=“$ARP_PROJECTS_DIR$/PCWE/Plc/Gds/*.gds.config“ />
<Include path=“$ARP_PROJECTS_DIR$/Example/*.gds.config“ />

</Includes>

In the example, all GDS configuration files from the following directories are included in the

configuration. „$ARP_PROJECTS_DIR$“ is a PLCnext Technology environment variable

with the value /opt/plcnext:

– “Default”: /opt/plcnext/projects/Default/Plc/GDS (created by the firmware)

– “PCWE”: /opt/plcnext/projects/PCWE/Plc/GDS (created by PLCnext Engineer)

– “Example”: /opt/plcnext/projects/Example (created by the user)

2.7 ESM (Execution and Synchronization Manager)

PLCnext Technology also features task handling. The Execution and Synchronization Man-

ager (ESM) performs task handling, monitoring, and chronological sequencing of programs

from different programming languages. Each processor core of a controller is managed by

one ESM. One ESM is therefore assigned to one processor core. If a controller has more

than one processor core, then there are also several ESMs (example: controller

AXC F 2152: 2 processor cores and 2 ESMs).

The ESM has the following advantages:

– Configuration and monitoring of cyclic tasks and idle tasks.

– The execution times of the tasks are available as system variables and can be used for

diagnostics.

– System balancing.

– Multicore systems are supported.

The ESM can also be used to execute programs and program parts that were created in dif-

ferent programming environments in real time. These can include high-level languages

such as (C++), IEC 61131-3 code, and model-based tools such as Matlab
®

 Simulink
®

. Pro-

gram parts that were created using different programming languages can also be combined

and processed within a task. The EMS controls the processes and also executes the high-

When editing configuration files, observe the information in Sections “Task configuration

via configuration files” on page 23 and “GDS configuration using configuration files” on

page 34.
108664_en_03 PHOENIX CONTACT 21 / 202

PLCNEXT TECHNOLOGY
level language programs deterministically in the defined order. To ensure data consistency

between the tasks at all times, all data is synchronized with the GDS whenever a task is

called (see also Section “GDS (Global Data Space)” on page 27).

Figure 2-6 ESM (Execution and Synchronization Manager)

2.7.1 Task configuration with PLCnext Engineer

You can use the PLCnext Engineer software to easily create and configure tasks. Here, you

can proceed as in a conventional IEC 61131-3 program. The IEC 61131-3 program, or the

program created in a different programming environment and then imported into

PLCnext Engineer, can be instantiated in a task. It does not matter whether the programs

were created with C/C++, IEC 61131-3 or Matlab
®

 Simulink
®

.

In the PLCnext Engineer “Tasks and Events” editor, you can instantiate a task and assign it

to the desired program instances. A description of this procedure and further information on

task handling with PLCnext Engineer is available in the online help, the PLCnext Engineer

quick start guide (PLCNEXT ENGINEER, Order no. 1046008), and the AXC F 2152 control-

ler user manual (Order no. 2404267). The documentation for the respective products can

be downloaded at phoenixcontact.net/products. You can call the online help from within

PLCnext Engineer.

Figure 2-7 Example: tasks and program instances in PLCnext Engineer

ESM
Task 1 (1 ms) Task 2 (3 ms) Task 3 (10 ms)

Prg 1 IEC 61131-3 Prg 2 Simulink Prg 3 C++

Prg 4 C++

Prg 5 IEC 61131-3
22 / 202 PHOENIX CONTACT 108664_en_03

http://www.phoenixcontact.net/products

Structure of PLCnext Technology
2.7.2 Task configuration via configuration files

You can also modify the task configuration, the instantiation of programs and the assign-

ment to a processor core (one ESM per processor core) without PLCnext Engineer via con-

figuration files in XML format. All of the important settings can be configured directly in the

configuration file on the controller. To modify the configuration manually, the XML file can

be edited using any editor. The ESM can load one or several configuration files and create

a joint configuration.

Example of a configuration file:

<?xml version="1.0" encoding="utf-8"?>
<EsmConfigurationDocument xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" schemaVersion="1.0" xmlns="http://www.phoe-
nixcontact.com/schema/esmconfig">

<Tasks>
<PreDefinedEventTask name="Cold" stackSize="0" eventName="Arp.Plc.Esm.OnColdStart"
confirmed="false" priority="0" watchdogTime="100000000" executionTimeThreshold="0" />
<PreDefinedEventTask name="Warm" stackSize="0" eventName="Arp.Plc.Esm.OnWarmStart"
confirmed="false" priority="0" watchdogTime="100000000" executionTimeThreshold="0" />
<PreDefinedEventTask name="Except" stackSize="0" eventName="Arp.Plc.Esm.OnException"
confirmed="false" priority="0" watchdogTime="100000000" executionTimeThreshold="0" />
<IdleTask name="Idle" stackSize="0" watchdogTime="100000000" executionTimeThreshold="0" />
<PreDefinedEventTask name="interbus" stackSize="0" eventName="Arp.Io.Interbus.OnCycleEnd"
confirmed="true" priority="0" watchdogTime="100000000" executionTimeThreshold="0" />

</Tasks>
<EsmTaskRelations>

<EsmTaskRelation esmName="ESM1" taskName="Cold" />
<EsmTaskRelation esmName="ESM1" taskName="Warm" />
<EsmTaskRelation esmName="ESM1" taskName="Execpt" />
<EsmTaskRelation esmName="ESM1" taskName="Idle" />
<EsmTaskRelation esmName="ESM1" taskName="interbus" />

</EsmTaskRelations>
<Programs>

<Program name="Main1" programType="Main" componentName="Arp.Plc.Eclr" />
<Program name="Main2" programType="Main" componentName="Arp.Plc.Eclr" />
<Program name="Main3" programType="Main" componentName="Arp.Plc.Eclr" />
<Program name="Main4" programType="Main" componentName="Arp.Plc.Eclr" />
<Program name="Main5" programType="Main" componentName="Arp.Plc.Eclr" />

</Programs>
<TaskProgramRelations>

<TaskProgramRelation taskName="Cold" programName="Arp.Plc.Eclr/Main1" order="0" />
<TaskProgramRelation taskName="Warm" programName="Arp.Plc.Eclr/Main2" order="0" />
<TaskProgramRelation taskName="Execpt" programName="Arp.Plc.Eclr/Main3" order="0" />
<TaskProgramRelation taskName="Idle" programName="Arp.Plc.Eclr/Main4" order="0" />
<TaskProgramRelation taskName="interbus" programName="Arp.Plc.Eclr/Main5" order="0" />

</TaskProgramRelations>
<TaskEvents />
</EsmConfigurationDocument>

To configure tasks for execution in the ESM (Execution and Synchronization Manager)

using the *.esm.config configuration file, proceed as follows:

When a project is downloaded from PLCnext Engineer to the controller, the previous con-

figuration files are overwritten with the new configuration files. Section “Manual configura-

tion” on page 20 describes how you can safely store your manually modified configuration

in the controller file system, thus preventing the loss of data.
108664_en_03 PHOENIX CONTACT 23 / 202

PLCNEXT TECHNOLOGY
Defining a task A task is defined between tags <Tasks> and </Tasks>.

Example of defining a task:

<Tasks>
<CyclicTask name="SquareWave_Cycle" stackSize="0" priority="0" cycleTime="100000000"
watchdogTime="100000000" executionTimeThreshold="0" />
<CyclicTask name="CPP_Cycle" stackSize="0" priority="0" cycleTime="100000000"
watchdogTime="100000000" executionTimeThreshold="0" />
<CyclicTask name="PCWE_Cycle" stackSize="0" priority="0" cycleTime="100000000"
watchdogTime="100000000" executionTimeThreshold="0" />

</Tasks>

<Tasks>
<PreDefinedEventTask name="Cold" stackSize="0" eventName="Arp.Plc.Esm.OnColdStart"
confirmed="false" priority="0" watchdogTime="100000000" executionTimeThreshold="0" />

</Tasks>

Definition of the task starts with the task type.

• Here, enter the type:

– CyclicTask = Cyclic task

– IdleTask = Idle task

– PreDefinedEventTask = System event task (cold restart, warm restart, hot re-

start, stop, exception)

• Define the tasks using the attributes from the following table:

Attribute Description

name The name attribute defines the task name.

• Enter the task name.

The name must be unique. It can only be used once per controller.

priority The priority attribute defines the task priority.

• Enter a value to specify the task priority.

– 0: Highest priority

– 31: Lowest priority

– 32: Reserved for idle task (no priority is indicated for an

idle task)

cycleTime The cycleTime attribute defines the duration of the task (for cyclic

tasks only).

• Enter the value in nanoseconds.

The minimum value of the AXC F 2152 controller is

500000 ns = 500 μs. Select a multiple of the minimum value. De-

pending on the application, the jitter time for a task may increase

as the system load increases.
24 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Assigning a task Once the task has been defined, it has to be assigned to the desired ESM. Assignment is

defined between tags <EsmTaskRelations> and </EsmTaskRelations>.

Example: Assigning a task to an ESM

<EsmTaskRelations>
<EsmTaskRelation esmName="ESM1" taskName="SquareWave_Cycle" />
<EsmTaskRelation esmName="ESM1" taskName="CPP_Cycle" />
<EsmTaskRelation esmName="ESM1" taskName="PCWE_Cycle" />

</EsmTaskRelations>

• Assign the task using the attributes from the following table:

Instantiating of programs Once the task is defined and assigned to an ESM, programs can be instantiated. Programs

are defined between tags <Programs> and </Programs>. The definition of a program in-

stance is introduced with the tag <Program>. Programs that have been programmed in

IEC 61131-3 can only be sent and configured with PLCnext Engineer. The code example

originates from a config file generated with PLCnext Engineer.

Instantiating of programs (example):

<Programs>
<Program name="SquareWave" programType="PCWE_SquareWave_P" componentName="Arp.Plc.Eclr" />
<Program name="CPP_Counter" programType="CPP_Counter_P"
componentName="CPP_Counter.CPP_Counter_C-1" />
<Program name="CPP_Counter_P1" programType="CPP_Counter_P"
componentName="CPP_Counter.CPP_Counter_C-1" />
<Program name="PCWE_Counter" programType="PCWE_Counter_P" componentName="Arp.Plc.Eclr" />

</Programs>

watchdogTime The watchdog monitors whether the task was executed within the

specified time.

• Enter the value in nanoseconds. Value “0” means that there is

no monitoring.

The watchdogTime attribute can be used for cyclic and idle tasks.

EventName The following values are valid for this attribute.

– Arp.Plc.Esm.OnColdStart (cold restart)

– Arp.Plc.Esm.OnWarmStart (warm restart)

– Arp.Plc.Esm.OnHotStart (hot restart)

– Arp.Plc.Esm.OnStop (stop)

– Arp.Plc.Esm.OnException (exception)

Attribute Description

Attribute Description

esmName The esmName attribute defines the name of the ESM the respective

task is to be assigned to.

• Enter the task name.

Example: ESM1 or ESM2 for a controller with dual core processor.

taskname The taskname attribute defines the task to be assigned.

• Enter the name of the task to be assigned.
108664_en_03 PHOENIX CONTACT 25 / 202

PLCNEXT TECHNOLOGY
• Instantiate programs using the attributes from the following table:

Assigning program in-

stances to a task

The program instances have to be assigned to a task. Assignment is made between tags

<TaskProgramRelations> and </TaskProgramRelations>.

Assigning program instances to a task:

<TaskProgramRelations>
<TaskProgramRelation taskName="SquareWave_Cycle" programName="Arp.Plc.Eclr/SquareWave"
order="0" />
<TaskProgramRelation taskName="CPP_Cycle" programName="CPP_Counter.CPP_Counter_C-
1/CPP_Counter" order="0" />
<TaskProgramRelation taskName="CPP_Cycle" programName="CPP_Counter.CPP_Counter_C-
1/CPP_Counter_P1" order="1" />
<TaskProgramRelation taskName="PCWE_Cycle" programName="Arp.Plc.Eclr/PCWE_Counter" order="0"

/>
</TaskProgramRelations>

• Assign the program instance to a task using the attributes from the following table.

Attribute Description

name The name attribute defines the name of the program instance.

• Enter the name of the program instance.

The name must be unique within the controller.

programType The programType attribute defines the program type.

• Enter the program type.

componentName The componentName attribute defines the name of the component

that contains the program.

• Enter the name of the component as it is defined in the

*.acf.config configuration file. The “Arp.Plc.Eclr” component is

reserved for IEC 61131-3 programs that were instantiated with

PLCnext Engineer.

See Section 6.2.3 “Creating a new C++ project in Eclipse®”

Attribute Explanation

taskname The taskname attribute specifies the name of the task the program

instance is to be assigned to.

• Enter the name of the desired task the program instance is to

be assigned to.

programName The programName attribute defines the name of the program in-

stance with the prefixed library and component names. The name

is used to select the program instance to be processed in the task.

• Enter the full name into the program instance to be processed.

order The order attribute determines the order in which program in-

stances are processed within a task, starting with 0.

• Enter a number to determine the processing sequence.

The program instance with the digit 0 is processed first. Each num-

ber can only be used once for each task.
26 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.8 GDS (Global Data Space)

The GDS enables communication relationships and data exchange between tasks and pro-

grams that were created in different programming languages. The GDS also ensures that

inconsistencies as shown in the following example are prevented:

While tasks are being processed and data is being exchanged directly between tasks, read

and write access can overlap due to different cycles and intervals. In the example in

Figure 2-8, task 1 – with medium priority – begins processing and, once completed, outputs

a value. This value is used by task 2 as an input value. Task 2 starts processing using this

input value, and then the processing is interrupted by another start of task 1. Task 1 has a

higher priority and is processed again, while task 2 is paused. At the end of processing

task 1, a new value is output that is again sent to task 2 as an input value. Once task 1 is

finished, processing of task 2 is continued. However, because the input value has changed

in the meantime, there is data inconsistency which may lead to problems. The use of the

GDS can prevent such inconsistencies.

Figure 2-8 Example of data inconsistency

2.8.1 Port-based communication

With the GDS, it is easy to establish communication relationships between different pro-

grams. This communication between the PLCnext Technology programs is implemented

via ports. A port represents an endpoint of a component within a PLCnext Technology ap-

plication. Via a port, data can be exchanged with other components (e.g., program in-

stances and I/O systems). To enable this type of data exchange, the program variables to

be exchanged or process data of the I/O components are defined as IN or OUT ports.

The data that is written from the tasks into the GDS is written via OUT ports. Tasks that re-

ceive input data read this data from the GDS via IN ports. Using the ports ensures data con-

sistency and correctly functioning communication relationships at all times.

Task 2
Low Prio

Task 1
Mid Prio

Count = 1

Write Count +1

Count = 2
Write Count +1

Read Count = 1

Read Count = 2

Task End

Task Start

Task Start

Task End

Task Start

Task End
108664_en_03 PHOENIX CONTACT 27 / 202

PLCNEXT TECHNOLOGY
Figure 2-9 Example: Inter-task communication with ESM and GDS

The IN and OUT ports are coupled via buffer mechanisms and synchronized during execu-

tion.

– Start of a task cycle (OnTaskExecuting): The IN ports are read from the GDS buffer

storage units by the program instances to be called in the task.

– End of a task cycle (OnTaskExecuted): The OUT ports are written to the GDS buffer

storage units by the program instances to be called in the task.

The following figure shows the behavior of task 1:

Figure 2-10 Example: Port communication with task 1 buffer storage unit

Data exchange for IN ports and OUT ports takes place at the beginning and at the end of

each task execution. This only concerns data exchange of IN and OUT ports whose pro-

grams have been instantiated in different tasks. Ports within the same task are exchanged

within the task. Furthermore, data exchange is only executed if the program instances are

ESM

GDS

PROFINET Axioline

Task 1 (1ms)

Prg 1 IEC 61131-3

Task 2 (3ms)

Prg 2 Simulink

Prg 4 C++

Prg 5 IEC 61131-3

Task 3 (10ms)

Prg 3 C++

...

GDS buffer storage
28 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
linked to one another via IN and OUT ports. This ensures that the data is always stable and

consistent during execution.

The following figure shows the behavior of task 1 and task 2:

Figure 2-11 Example: Port communication with task 1 and task 2 buffer storage units

The following applies to the connection of IN and OUT ports:

– OUT ports can be shared within an application. One OUT port can be connected to sev-

eral IN ports.

– An IN port can only be connected to one OUT port.

2.8.2 Fieldbus connection

Connection via IN and OUT ports

In addition to the communication between different tasks, process data from and to field-

buses can also be exchanged via IN and OUT ports. Fieldbus systems also have buffer stor-

age units, although these are arranged logically within the fieldbus component itself. Values

are written to and read from these buffer storage units by the GDS. The fieldbus performs

further handling.

Figure 2-12 “Example: Fieldbus communication via IN and OUT ports” shows the behavior

of fieldbus communication via ports.

Figure 2-12 Example: Fieldbus communication via IN and OUT ports

All the components of a PLCnext Technology application as well as I/O components that are

part of the data exchange process must be connected via IN and OUT ports. At the begin-

ning of a task, the task retrieves the data from the buffer storage unit. At the end of the task,

the calculated values are actively rewritten to the buffer storage unit. Therefore, the buffer

storage unit is the data exchange area between an IN and an OUT port. The IN and OUT

port connection between fieldbus components and tasks shows an analog behavior to the

data exchange via ports between several tasks (see Section 2.8.1 “Port-based communica-

tion” on page 27).

GDS buffer storage

Further information on connecting ports is available in the PLCnext Engineer online help

(see “Role mapping: Assigning PLCnext ports”).

GDS buffer storage
108664_en_03 PHOENIX CONTACT 29 / 202

PLCNEXT TECHNOLOGY
By using the IN and OUT ports, the variable values are updated in the task context. The data

is written to or read from the GDS buffer storage unit and is available to a task for the entire

cycle. Using the IN and OUT ports secures task-internal data consistency. The fieldbus data

is consistent as it comes from the same sampling cycle, and is also consistent within the

task cycles. This also applies if programs are interrupted and a fieldbus is updated within

this period of interruption. The variable value is buffered in the GDS and is available to the

task for the period of time it requires to process all related programs, even with interruption.

When a fieldbus is connected to an ESM task, I/O data can be exchanged via the IN and

OUT ports. For this, declare the variables in the data list of the “PLCnext” node of

PLCnext Engineer as IN or OUT ports. The I/O data is updated in the update cycle of the

ESM task.

Example

Port connection

A cyclic task has an update rate of 30 ms, for example. The user programs of the task con-

sume the I/O data of the linked I/O variables. The I/O variables are updates at a cycle of

30 ms and are available to the programs. In this way, the programs in the task can also use

the latest values. At the beginning of the task, the data is written from the fieldbus OUT port

to the IN port of the task. At the end of the task, the output data is written to the IN port of the

fieldbus via the OUT port of the task.

Figure 2-13 Fieldbus connection via ports

Connection via resource-global variables

Resource-global

variables as input

When creating your application, remember that there is no claim for data consistency when

using resource-global variables. According to IEC 61131-3, resource-global variables can

be used as an input in all Program Organization Units (POE) of the current resource. Several

ESM tasks can access the fieldbus I/O data declared as resource-global variable. Declare

the variables as “Program” in the local variable table or in the PLCnext Engineer data lists.

This way, the I/O data can be used in the programs of different tasks. The update rate of the

resource-global variable always depends on only one task. For the update behavior, an

ESM task can be selected. You can make the setting in PLCnext Engineer:

• Open the respective node in the “PLANT” area for this.

I/O

Fieldbus

ESM-Task

30 ms

30 ms

IN-/ -PortsOUT

To avoid inconsistent I/O data and the resulting errors, Phoenix Contact recommends to

implement the fieldbus connection via the IN and OUT ports.
30 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
• From the “Update task” drop-down list in the “Settings” editor, select the desired task.

Figure 2-14 Selecting “Update task” (in this example: Axioline F)

Resource-global

variables as output

Usually, resource-global variables are only used once as an ouput in order to avoid uninten-

tional overwriting of values.

NOTE: “GLOBALS” task update behavior

If no update task is selected that triggers the update cycle, the “GLOBALS” task is used

(low priority and update rate of 50 ms). You can set one update task each for the groups

of fieldbuses, ESM system variables and the system variables of the PLCnext Engineer

HMIs.

Note: If you use resource-global variables several times as an output, the last value over-

writes the previous values.
108664_en_03 PHOENIX CONTACT 31 / 202

PLCNEXT TECHNOLOGY
Example of fieldbus con-

nection via resource-glob-

al variables

In the example in Figure 2-15, the update rate of the global variable depends on the cycle

time of ESM task 1. The update time of 30 ms for the global variables therefore also applies

to ESM task 2 and other tasks, if applicable. The cycle time of ESM task 2 is 20 ms. Still, it

must process the cycle with the values synchronized by task 1. For task 2, this means that

the data does not exactly correspond to the current process data image of the fieldbus com-

ponents, but that data can be up to 30 ms old.

Figure 2-15 Example: Fieldbus connection via resource-global variables

Interruption of tasks If task 2 from the example in Figure 2-15 has a higher priority than task 1, it might be the

case that task 1 is interrupted by task 2 when updating fieldbus data. Then, task 2, with its

higher priority, is processed. Once task 2 is processed, there already is an updated data

image from the fieldbus due to the update rate. The interrupted task 1 is now continued and

accesses the fieldbus data that is still missing. However, this data is not consistent with the

data retrieved before interruption.

Comparison of connec-

tions via IN and OUT ports

and resource-global vari-

ables

Connection via IN and OUT ports:

– Fieldbus data is consistent as it was retrieved and written to the buffer storage unit at

the same time.

– Thanks to the GDS buffer storage units, fieldbus data is consistent during task process-

ing.

Resource global I/O

I/O

Fieldbus

30 ms

30 ms

20 ms

ESM-Task 2

ESM-Task 1

30 ms

20 ms

Take this behavior into consideration when creating your application. Processing of in-

consistent data can result in errors in the process.
32 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
– The user is not responsible for data consistency as it is ensured via the GDS buffer stor-

age units.

– Connecting IN and OUT ports of the task and fieldbus components is complex and less

flexible than using resource-global variables.

Resource-global variables:

– At first sight, using resource-global variables seems to be quite easy.

– Update rates and interruptions of tasks due to priority can result in inconsistencies in

the process data image.

– Inconsistent data can result in errors in the application.

– The user is responsible for data consistency, which is not ensured by the system.

2.8.3 GDS configuration with PLCnext Engineer

You can configure the GDS by connecting IN and OUT ports of programs to one another

using the PLCnext Engineer software (see also 9 “Importing libraries into

PLCnext Engineer”).

In PLCnext Engineer, select the desired use as an IN or OUT port in the “Data List” editor of

the “PLCnext” node for the respective process data. You can see an overview of all IN and

OUT ports available in the GDS in the “Data List“ editor. The programs communicate via the

IN and OUT ports of the GDS. Communication is also possible between IEC 61131-3 pro-

grams, and programs that were created using other programming languages (e.g., C++).

For this purpose, the IN and OUT ports must be assigned to one another.

To avoid inconsistent I/O data and the resulting errors, Phoenix Contact recommends to

implement the fieldbus connection via the IN and OUT ports.

IN and OUT ports are only displayed in the “Data List” editor of the “PLCnext” node.
108664_en_03 PHOENIX CONTACT 33 / 202

PLCNEXT TECHNOLOGY
Figure 2-16 Example: List of all available IN and OUT ports

A detailed description of the procedure and additional information on GDS configuration

with PLCnext Engineer is available in the online help, the PLCnext Engineer quick start

guide (PLCNEXT ENGINEER, Order no. 1046008) and the AXC F 2152 controller user

manual (Order no. 2404267). The documentation for the respective products can be down-

loaded at phoenixcontact.net/products. You can call up the online help from within

PLCnext Engineer.

2.8.4 GDS configuration using configuration files

You can also modify the GDS configuration without PLCnext Engineer but using configura-

tion files. All of the important settings can be configured directly in the *.gds.config configu-

ration file on the controller. All configuration files (except *.libmeta) are created by

PLCnext Engineer. To modify the configuration, the XML file can be edited using any editor.

When a project is downloaded from PLCnext Engineer to the controller, the previous

PLCnext Engineer configuration files are overwritten with the new configuration files. Sec-

tion “Manual configuration” on page 20 describes how you can safely store your manually

modified configuration in the controller file system, thus preventing the loss of data.
34 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
You will find the file in the “/opt/plcnext/projects/.../Plc” directory of your controller (see Sec-

tion 2.14.1 “Directories of the firmware components in the file system”). The file system is

accessed via the SFTP protocol. Use a suitable SFTP client software for this, e.g., WinSCP.

The individual connections with their respective IN and OUT ports are defined between the

<Connectors> and </Connectors> tags. A connector is a directed connection from

startPort to endPort. An OUT port is entered as a startPort attribute and an IN port as

an endPort attribute. Within the *.gds.config, each port has its own unique name that has

the following structure:

ComponentInstanceName/GroupName.VariableName

Examples:

– Program port:

startPort/endPort=“Namespace.ComponentInstance/ProgramInstan-
ceA.Freigabe“

– Fieldbus port:

startPort/endPort=“Arp.Io.AxlC/0.~DO16“

Attribute Explanation

ComponentInstanceName Components of a PLCnext Technology application can be

– Programs

– PROFINET controllers (e.g.,

“Arp.Io.PnC”/“Arp.Io.PnD”)

– The IEC 61131-3 runtime (e.g., Arp.Plc.Eclr.EclrCom-

ponent)

– Or a C++ application, (e.g., Counters.CppCounterCom-

ponent)

Names that start with “Arp...” are specified by the

PLCnext Technology firmware.

The names of the C++ applications are specified by the user

during instantiation.

Exception: When instantiating C++ or Matlab
®

 Simulink
®

programs in PLCnext Engineer, the name of the component

instance is specified by PLCnext Engineer.

There can be one or multiple instances of each component.

In the case of a PROFINET device, it is possible to gain ac-

cess by entering the node ID (for more information, please

refer to the online help within PLCnext Engineer).

• Enter the name of the instance here.

GroupName With program instances, the name is specified. The name of

a program instance must be unique within the controller.

• Enter the name of the program instance.

A local bus device is defined based on the position of the de-

vice in the local bus. The position numbering starts with digit

0.

• Enter the position number instead of

GroupName.

VariableName • Enter the name of the IN and OUT ports or the process

data here, depending on the component type.
108664_en_03 PHOENIX CONTACT 35 / 202

PLCNEXT TECHNOLOGY
– Component port:

startPort/endPort=“ComponentInstance/Freigabe“

There are various types of ports that can be used for data exchange. The port concept can

be used with the following process data:

The cycle for updating system variables can also be configured. Resource-global variables

(IEC 61131-3) can be connected to fieldbus variables or variables of other ARP compo-

nents. As these are connections of component global variables, the events of a permanently

defined task (update task) are used for the cyclic update of variable values. You can config-

ure the update time in PLCnext Engineer:

• Open the respective node in the “PLANT” area for this.

• Select the desired task from the “Update task” drop-down list in the “Settings” editor.

Figure 2-17 Selecting “Update task”

Description Code with example

Data of the runtime system of the

controller

Enter the name of the program instance and the variable name as the port in the fol-

lowing format:

runtime system/program instance.variable name
(e.g.,: Arp.Plc.Eclr/MainInstance.OUT_PORT_A)

You can use global variables as well as IN and OUT ports.

Data of a high-language project on

the controller

Enter the name of the program instance and the variable name as the port in the fol-

lowing format (in accordance with the format in the *.acf.config file):

library name.component instance/program instance.variable name
(e.g.,: CppCounterLibrary.CppCounterComponent-1/CppCounterProgram1.IP-
_CppEnable)

PROFINET process data Enter the name of the PROFINET controller and the process data name as the port in

the following format:

PROFINET Controller/Node-ID.process data name
(e.g.,: Arp.Io.PnC/46.~DI8)

Local bus process data Enter the name of the local bus controller and the process data name as the port in the

following format:

Local bus controller/module position.process data name
(e.g.,: Arp.Io.AxlC/0.~DO8)
36 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
You can select an update task for the following variables:

If you do not select a task for a component, the “Globals” task is used with a cycle time of

50 ms (default).

The settings made in PLCnext Engineer are saved to a *.gds.config file and downloaded to

the controller.

The assignment of variables to an update task is made between tags <ComponentTaskRe-
lations> and </ComponentTaskRelations>.

Example excerpt from a *.gds.config file. Here, the IN and OUT ports of an application are

assigned to each other:

<?xml version="1.0" encoding="utf-8"?>
<GdsConfigurationDocument xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xm-
lns:xsd="http://www.w3.org/2001/XMLSchema" schemaVersion="1.0" xmlns="http://www.phoenixcon-
tact.com/schema/gdsconfig">
<ComponentTaskRelations>

<ComponentTaskRelation component="Arp.Plc.Esm" task="Cyclic100" />
<ComponentTaskRelation component="Arp.Plc.AxlC" task ="Task100ms" />
<ComponentTaskRelation component="Arp.Services.SpnsProxy" task ="Task100ms" />

</ComponentTaskRelations>
<Connectors>

<Connector startPort="Arp.Plc.Eclr/SquareWave.OP_Signal1"
endPort="CPP_Counter.CPP_Counter_C-1/CPP_Counter.IP_CppEnable_bit" />
<Connector startPort="Arp.Plc.Eclr/SquareWave.OP_Signal2"
endPort="Arp.Plc.Eclr/PCWE_Counter.IP_CounterEnable" />
<Connector startPort="Arp.Plc.Eclr/SquareWave.OP_Signal2" endPort="Arp.Io.PnC/20.OUT00" />
<Connector startPort="Arp.Io.PnD/PND_S1_PLC_RUN" endPort="Arp.Plc.Eclr/PND_S1_PLC_RUN" />
<Connector startPort="Arp.Io.PnD/PND_S1_VALID_DATA_CYCLE"
endPort="Arp.Plc.Eclr/PND_S1_VALID_DATA_CYCLE" />
<Connector startPort="Arp.Io.PnD/PND_S1_OUTPUT_STATUS_GOOD"
endPort="Arp.Plc.Eclr/PND_S1_OUTPUT_STATUS_GOOD" />
<Connector startPort="Arp.Io.PnD/PND_S1_INPUT_STATUS_GOOD"
endPort="Arp.Plc.Eclr/PND_S1_INPUT_STATUS_GOOD" />
<Connector startPort="Arp.Io.PnD/PND_S1_DATA_LENGTH"
endPort="Arp.Plc.Eclr/PND_S1_DATA_LENGTH" />
<Connector startPort="Arp.Plc.Eclr/PND_S1_OUTPUTS" endPort="Arp.Io.PnD/PND_S1_OUTPUTS" />
<Connector startPort="Arp.Io.PnD/PND_S1_INPUTS" endPort="Arp.Plc.Eclr/PND_S1_INPUTS" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_HI"
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_HI" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_LOW"

Table 2-1 Update task

Component Variables component tag (config file)

Controller ESM system variables Arp.Plc.Esm

HMI web server HMI system variables Arp.Services.Ehmi

Axioline – Axioline system variables

– Global variables linked to I/O

Arp.Plc.AxlC

INTERBUS – INTERBUS system variables

– Global variables linked to I/O

Arp.Io.IbM

PROFINET – PROFINET device system variables

– PROFINET controller system variables

– GlobVars linked to I/O

– Arp.Io.PnD
– Arp.Io.PnC

SPNS Safety and PROFIsafe system variables Arp.Services.SpnsProxy
108664_en_03 PHOENIX CONTACT 37 / 202

PLCNEXT TECHNOLOGY
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_LOW" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_PARAM_REG_HI"
endPort="Arp.Plc.Eclr/AXIO_DIAG_PARAM_REG_HI" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_PARAM_REG_LOW"
endPort="Arp.Plc.Eclr/AXIO_DIAG_PARAM_REG_LOW" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_PARAM_2_REG_HI"
endPort="Arp.Plc.Eclr/AXIO_DIAG_PARAM_2_REG_HI" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_PARAM_2_REG_LOW"
endPort="Arp.Plc.Eclr/AXIO_DIAG_PARAM_2_REG_LOW" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_PF"
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_PF" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_BUS"
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_BUS" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_RUN"
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_RUN" />
<Connector startPort="Arp.Io.AxlC/AXIO_DIAG_STATUS_REG_ACT"
endPort="Arp.Plc.Eclr/AXIO_DIAG_STATUS_REG_ACT" />

2.8.5 Supported data types

The programs of a PLCnext Technology application communicate via IN ports and OUT

ports. The combination of the following data types is supported.

2.8.5.1 Elementary data types

When setting the IN and OUT ports with PLCnext Engineer, you can only enter permitted

combinations of data types.

If you implement the configuration without PLCnext Engineer but via the XML configura-

tion file, you have to ensure that only the data type combinations listed in Table 2-2 are

used. If an invalid combination is configured, the startup process of the

PLCnext Technology firmware is interrupted.

Information on the startup behavior of the firmware is available in the Output.log diagnos-

tic file. The file contains status and error messages as well as warning notes that help you

find the source of error. The Output.log file is stored in the controller file system in the

“/opt/plcnext/logs” directory. The file system is accessed via the SFTP protocol. Use a

suitable SFTP client software for this, e.g., WinSCP (see Section ““Template Loggable””

on page 129).

Table 2-2 Supported data type combinations between C++, Simulink
®

, and PLCnext Engineer programs

C++ Simulink
®

PLCnext Engineer Use in array data type Use in struct data type

Boolean Boolean BOOL x x

int8 int8 SINT x x

uint8 uint8 USINT x x

int16 int16 INT x x

uint16 uint16 UINT x x

int32 int32 DINT x x

uint32 uint32 UDINT x x

int64 LINT x x

uint64 ULINT x x

uint8 uint8 BYTE x x
38 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
uint16 uint16 WORD x x

uint32 uint32 DWORD x x

uint64 LWORD x x

float32 single REAL x x

float64 double LREAL x x

Array of primitive data types x

Table 2-2 Supported data type combinations between C++, Simulink
®

, and PLCnext Engineer programs

C++ Simulink
®

PLCnext Engineer Use in array data type Use in struct data type
108664_en_03 PHOENIX CONTACT 39 / 202

PLCNEXT TECHNOLOGY
The following data type combinations between C++ programs are supported:

Table 2-3 Supported combinations of IN and OUT ports between C++ programs

StartPort EndPort StartPort EndPort

uint16

uint64

Boolean

Boolean int32

uint8 int64

uint16 float32

uint32 float64

uint64

char8

uint32

uint32

int8 uint64

int16 int64

int32 float64

int64

float32 uint64 uint64

float64

int8

int8

char8

char8 int16

uint16 int32

uint32 int64

uint64 float32

int16 float64

int32

int64

int16

int16

float32 int32

float64 int64

float32

uint8

uint8 float64

uint16

uint32

int32

int32

uint64 int64

int16 float64

int32

int64 int64 int64

float32

float64

float32

float32

float64

uint16

uint16

uint32 float64 float64
40 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.8.5.2 Connection of structures

In addition to connecting elementary data types and arrays, the GDS also enables the con-

nection of entire structures. Structures are data types that can exist of elements of different

data types. The design of structures can be freely defined.

A StructConnector is used for connecting two struct ports. A StructConnector is a manage-

ment object that is used to implement the connection of complete structures and the actual

data transport. The connection logic of two struct ports therefore contains a comparison

based on type definitions. It is checked whether the size of the structures, the data type, the

offset, the dimensions, and the number of elements match. It is also checked if the align-

ment of the individual struct members is consistent. This is important for determining the bi-

nary compatibility of the structures. The check is implemented without the names of the in-

dividual struct members.

Complete copying The firmware completely copies the structures via memcpy(). Binary compatibility of the

type definitions is required for this method.

To compare the size of the structure types and subsequently, the data types and offsets of

the individual structure fields, a type check is run.

Below figure shows the connection of structures between tasks. Here, the communication

between two programs is implemented via a type “SampleStruct” port

Figure 2-18 Connection of structures
108664_en_03 PHOENIX CONTACT 41 / 202

PLCNEXT TECHNOLOGY
2.9 RSC (Remote Service Calls)

Internal user components can communicate with the PLCnext Technology core compo-

nents via the RSC interface. You can access various functions and data items via the inter-

faces. For example, you can gain read and write access to GDS data using the “IDataAc-

cessService” RSC service.

Figure 2-19 PLCnext Technology – RSC services

ServiceManager You have the option of using the already registered RSC services of the SDK (Software De-

velopment Kit) via the ServiceManager. The ServiceManager acts as the RSC API and is

used to request services.

For additional information on using RSC services, please refer to Section 5.8, “Using RSC

services”.

2.10 PLCnext embedded OPC UA server (eUA)

2.10.1 OPC UA

OPC Unified Architecture (UA) is a standardized protocol for the industrial IT and OT com-

munication. On request, an OPC UA server provides an OPC UA client with process data

and variable values from a running application.

The PLCnext controllers contain an embedded OPC UA server (eUA). It is integrated in the

controller in addition to the runtime. It enables access to components, programs, function

blocks, structures, and variables of PLCnext Technology.

2.10.2 Configuration

If a controller features an integrated OPC UA server, the server is displayed in the

PLCnext Engineer software in the “PLANT” area (“OPC UA”). Here, you can configure the

OPC UA server. The configuration is loaded to the controller as part of a PLCnext Engineer

project and in form of a configuration file. It contains all parameters for setting the OPC UA

server. All users of an OPC UA client must authenticate themselves to the OPC UA server

Middleware (GDS, Commons-Layer, VE)

Internal User Component

(Non Real-time)
• z.B. libmodbus, MQTT, …

PLCnext Technology

Linux Operating System (Enhanced Mode)

System Components

Service Components

IO

Components

ESM / Real-time

Remote Service Calls
42 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
with a user name and a password. You can create a user via WBM of the controller (see

Section “Web-based management (WBM)” on page 73). In the course of this, you have to

assign the necessary roles:

– DataViewer

– DataChanger

– FileReader

– FileWriter

For additional information on user roles, please refer to Section ““User Authentication”

page” on page 82.

With PLCnext Engineer, the following configurations are possible:

– Defining the server endpoint URI

Define the name of the network node the eUA server is to use in the server URI and in

the endpoint URL.

– Defining a Global Discovery Server:

Define which certificate the server is to use.

– Visibility of variables and alarms for the OPC UA clients:

Due to security reasons, the variables and ports of a program in PLCnext Engineer are

set to not visible by default. Visibility can be set in your PLCnext Engineer project. In the

“PLANT” area, open the “OPC UA” node and then the “Basic settings”. Via the “Visibility

of variables” drop-down list, you can set the visibility of variables and alarms for the

OPC UA clients.

Figure 2-20 Setting the visibility of variables

– Privilege settings for data access:

You can configure access of clients to the file system of the server. Read and write ac-

cess for clients to selected folders and files in the file system of the server as well as

creating additional directories and files are possible. Once this option is active, only

PLCnext Technology users with a “FileReader” or “FileWriter” role can read or write

files. The required roles are assigned to the user in WBM of the controller (see Section

““User Authentication” page” on page 82).

For further information on configuring OPC UA in PLCnext Engineer, please refer to the

PLCnext Engineer online help.
108664_en_03 PHOENIX CONTACT 43 / 202

PLCNEXT TECHNOLOGY
2.10.3 OPC UA file access

All directories and files are displayed in the http://phoenixcontact.com/OpcUA/Files/ name-

space. Via the namespace, the corresponding “NamespaceIndex” can be determined from

the “NamespaceArray”. The “NamespaceIndex” is a numeric value for identification of the

namespace. It is saved in the “Namespace Array”. Via the “NamespaceIndex” and the “No-

deIdentifier”, the released data and directories can be retrieved.

The initial entry point for released directories and files is the “FileSystem” folder of type

“FolderType”. In this folder, released files and directories are displayed, starting with the

symbolic folder indicated in the config file.

Figure 2-21 “FileSystem” folder

The “NodeIdentifier” is structured as follows:

[Symbolic name]|[directory name]/[file name]

Example: OpcUa|OpcUa/Doc/doc.config

Figure 2-22 “NodeIdentifier” structure
44 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.10.4 Alarms

You can exchange alarm and status messages between a program and the eUA server. For

additional information, please refer to Section “Alarms” on page 48.

2.10.5 Subscriptions

An OPC UA client can subscribe to a list of variables that are then monitored for changes by

the GDS. The variables are checked for changes at a defined interval. If a changed variable

is detected during the cyclic check, the GDS informs the OPC UA server, which forwards

the message to the client. When subscribing to a variable, the client can define a sample

rate which is then served by the server. You can choose from predefined sample rates.

Sample rates are device-specific. The sample rates for the AXF F 2152 controller are de-

fined as follows, for example:

– 100 ms

– 250 ms

– 500 ms

– 1000 ms

– 2000 ms

– 5000 ms

If an OPC UA client requests a variable with the desired rate of 600 ms, for example, it will

be assigned to the “500 ms” group. The server assigns the subscription to the group that is

closest to the desired value and returns this value to the client as “RevisedSamplingInter-

val”.

2.10.6 “GlobalDataSpace” namespace

All programs and variables from the IEC 61131 context are displayed in the http://phoenix-

contact.com/OpcUA/PLCnext/GlobalDataSpace/ namespace. Via the namespace, the cor-

responding “NamespaceIndex” can be determined from the “NamespaceArray”. The

“NamespaceIndex” is a numeric value for identification of the namespace. It is saved in the

“Namespace Array”. Via the “NamespaceIndex” and the “NodeIdentifier”, a corresponding

process variable, structure, or function block can be retrieved. The “NodeIdentifier” is al-

ways structured as follows:

[component name]/[program name].[variable name]

Example: Arp.Plc.Eclr/PG_AllTypes1.DIntVar
108664_en_03 PHOENIX CONTACT 45 / 202

PLCNEXT TECHNOLOGY
Figure 2-23 “Arp.Plc.Eclr/PG_AllTypes1.DIntVar”

Figure 2-24 “Arp.Plc.Eclr/PG_AllTypes1.DIntVar” (Software: UA Expert)

The component name for C++ components is defined in the respective C++ project. It there-

fore differs from the component name from the IEC 61131 context (“Arp.Plc.Eclr”).
46 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.10.7 Device Integration (DI) namespace

In compliance with the “OPC UA for Devices” OPC UA Companion Specification, the eUA

server provides the following nodes:

2.10.8 Data types

For a mapping table containing the PLCnext Technology data types and the corresponding

OPC UA data type, see Section “Available data types” on page 191.

2.10.9 UA server endpoints

The eUA server offers an endpoint to which the clients can connect. In its URL, you can ei-

ther configure the IP address of the controller or the DNS name. Implement the configura-

tion in the PLCnext Engineer software:

• In PLCnext Engineer, open the “OPC UA” node in the “PLANT” area.

• In the “Basic settings”, either enter the DNS name or the IP address in the input field.

Figure 2-25 Endpoint configuration

Table 2-4 Device Integration node

Node Meaning

DeviceManual Path or URL to the user manual.

Note: The eUA server does not support this node.

Default value: Empty string

DeviceRevision General revision status of the device

Note: The eUA server does not support this node.

Default value: Empty string

HardwareRevision Hardware revision status, e.g., 02

Manufacturer Device manufacturer, e.g., “en”, “Phoenix Contact”

Model Name of the model, e.g., “en”, “AXC F 2152”

RevisionCounter Revision status of the static device data, e.g., 2

SerialNumber Device serial number, e.g., 13254768

SoftwareRevision Software version number

e.g., 2019.0 LTS (19.0.0.15906)
108664_en_03 PHOENIX CONTACT 47 / 202

PLCNEXT TECHNOLOGY
2.10.10 Encryption algorithms

You can offer the following encryption algorithms for the endpoints to the OPC UA clients:

– Basic 128 RSA15

– Basic 256

– Basic 256 SHA256

2.10.11 Ethernet ports at the controller

Currently, there is no mapping to a certain Ethernet port at the controller. Therefore, con-

nection is possible via all connections.

2.10.12 Disabling user authentication

You can also work without security settings. To this end, deactivate the user authentication

via web-based management of your controller. For a description as well as safety notes, see

Section 3.9.1 on page 82. When the user authentication is disabled, the OPC UA client

must not authenticate itself to the OPC UA server. This way, unrestricted access to the

OPC UA server is possible.

2.11 Alarms

In PLCnext Technology, alarms are mapped as messages informing about status changes

in the controller.

The alarms can be transmitted between different components. Possible alarm sources are

the IEC 61131 alarm blocks, but also programs written in C++ or Matlab
®

 Simulink
®

. A typ-

ical alarm recipient is the OPC UA server, which forwards the messages as OPC UA alarms

to interested OPC UA clients. However, alarm clients that react to alarm messages can also

be written in C++.

Alarms are defined by a complex status. All status changes are sent as a message by the

alarm source. As the status changes are forwarded as OPC UA alarms, the statuses arise

from the definition in the OPC UA specification.

Essential features of the alarm status are:

– Active – The alarm condition is active.

– Acknowledged – The user has seen the alarm condition.

– Confirmed – The user has solved the problem that led to the alarm.

– Severity – Severity of the alarm (from 1 = information to 1000 = severe error).

– Retain – The alarm is to be shown to the user (is evaluated by the client).

– Message – Message to be shown to the user.

– AlarmType – Alarm type (can be used for filtering in the client).

– AlarmId – Unique name of the alarm on the device.

– Time stamps for a variety of substatuses can be set as an option.

To introduce an alarm to the system, it first has to be registered. This has to be done before

the first use. As a result, you in the OPC UA server which alarms can occur.

By default, the “Basic128Rsa15" encryption algorithm is not active as this algorithm is no

longer regarded as secure. However, you can activate this algorithm to be able to connect

the eUA server to older OPC UA clients that support this algorithm at the maximum.
48 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
It is not possible to cancel alarms. However, they are deleted during each cold and warm

restart. This is why alarms have to be registered after each cold or warm restart. Registering

an alarm twice does not result in an error message.

Some alarms must be acknowledged and sometimes even confirmed. To do so, the “Ac-

knowledge” and “Confirm” methods can be used. These are also messages in

PLCnext Technology. However, they are sent from a client to the alarm source. The alarm

source must process this message. Usually, this results in a new alarm status which, as

usual, is sent to all clients.

Often there is the requirement to add additional information to an alarm, which is available

in the client and can be displayed in the message. For this, there are alternative alarm

blocks that can take on a structure with additional parameters. These parameters must be

entered during registration so that they are known to the client. In the message, the param-

eters can be referenced using placeholders. The following placeholders are supported:

The “ALM_ALARM” and “ALM_ALARM_PARAM” function blocks implement a defined se-

mantics of the alarms. Via “Requires Acknowledge” and “Requires Confirm” only, you can

specify if the alarm is to be acknowledged or confirmed. For more complex scenarios, you

can write your own alarm blocks. This way you can, for example, check additional condi-

tions, implement a different time behavior, or implement several alarms with one block. For

these tasks, the “ALM_CUSTOM_ALARM” block is available. It provides the “Low Level”

methods that were used for implementing the other blocks. The same functions are also

available in C++.

2.11.1 IEC 61131 alarm function blocks

The alarm function blocks are part of the “PLCnext Controller” library.

Figure 2-26 “Alarming” function blocks

There are three types of alarm function blocks:

Table 2-5 Placeholders for additional parameters

Placeholder Meaning

{0} Alarm name

The name must be unique within the controller.

{1} Alarm type

{2} First user parameter

{3} Second user parameter
108664_en_03 PHOENIX CONTACT 49 / 202

PLCNEXT TECHNOLOGY
1. Standard alarm blocks (“ALM_REGISTER”, “ALM_ALARM")

2. Blocks with user parameters (“ALM_REGISTER_PARAM”, “ALM_ALARM_PARAM”)

3. User-defined alarm blocks (“ALM_CUSTOM_ALARM”)

Alarm blocks use the “ALM_ALARM” structure for internal data storage. It is used by the

blocks and does not have to be described outside the block.

Standard alarm blocks To register an alarm, you can use the “ALM_REGISTER” function block. A rising edge or

constant TRUE signal at the input introduces the alarm to the system. This function block

must be called until the “DONE” output delivers a TRUE signal. If many alarms are regis-

tered at the same time, a FALSE signal might occur.

Several alarms can be registered in the same PLC cycle. However, if the “DONE” output

outputs a FALSE signal, the registration can only be continued during the next cycle.

Figure 2-27 “"ALM_REGISTER” function block

To send alarm statuses, you can use the “ALM-ALARM” function block. With each change

of the “ACTIVE” input, the new status is sent to the OPC UA server. This function block must

be called until the “DONE” output outputs a TRUE signal. If many alarms are transmitted at

the same time, a FALSE signal might occur. In this case, the call must be tried again in the

next cycle.

The “AUTO_ACK” and “AUTO_CONF” inputs can be used to control if alarms require ac-

knowledgement or confirmation. If both inputs are set to TRUE, the alarm will disappear as

soon as the condition at the “ACTIVE” input changes to FALSE again.
50 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
If acknowledgement or confirmation is desired, the function block has to process these re-

quirements. It is therefore required that the function block is called continuously so that is

can internally process these messages.

Figure 2-28 ALM_ALARM function block

Blocks with user parame-

ters

To send user-defined parameters together with an alarm, you can use extended function

blocks:

The user-defined parameters have to be introduced to the server via a structure. You can

define and use a structure of up to ten parameters. The parameters must each have an el-

ementary data type. For “ALM_REGISTER_PARAM", the names and types of the structure

components are taken from the data type definition (worksheet) as names and types for the

parameters. For the “ALM_ALARM_PARAM” function block, the values from the structure

are transmitted with the alarm status.

Figure 2-29 “ALM_REGISTER_PARAM” function block
108664_en_03 PHOENIX CONTACT 51 / 202

PLCNEXT TECHNOLOGY
Figure 2-30 “ALM_ALARM_PARAM” function block

User-defined alarm blocks Use the “ALM_CUSTOM_ALARM” function block to create your own alarm blocks. This

might be useful if special timing or filter is required, for example. In addition, you can use the

user-defined alarm block to set another semantics of “ACK”, “CONF” or “RETAIN”, or imple-

ment several alarms in a combined function block.

The “ALM_CUSTOM_ALARM” function block allows for access to methods of the subordi-

nate alarm system. All methods are implemented as methods of the block.

Figure 2-31 Methods of the “ALM_CUSTOM_ALARM” function block

The following methods send the corresponding messages to the OPC-UA server:

– “SendAcknowledge”

– “SendAddAlarm”

– “SendConfirm”

– “SendStateChange”

Use the following methods to determine if the function block has received the “Acknowl-

edge” or “Confirm” wish:

– “ShouldAcknowledge”

– “ShouldConfirm”
52 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Acknowledging and con-

firming alarms

Instead of the OPC UA server, you can also use the “ALM_ACK” and “ALM_CONF” function

blocks to acknowledge and confirm any alarm. The alarms are clearly identified by the

“ALARM_ID”.

Figure 2-32 “ALM_ACK” and “ALM_CONF” function blocks

2.11.2 Alarms in C++ programs

For programming in C++, the PLCnext Technology SDK provides the “AlarmAccess” class.

It can be used for alarm sources and alarm sinks.

During initialization of PLCnext Technology, the “AlarmAccess” class should be instantiated

and initialized (e.g., in “SetupConfig” of a PLCnext Technology component). C++ programs

can use the instance to send alarms. Using one instance for all alarms makes sense be-

cause many “AlarmAccess” instances would result in a correspondingly large number of

messages in PLCnext Technology, which would strain the system.

The classes can be included using the following headers:

#include "Arp/System/NmPayload/Alarms/AlarmAccess.hpp"
#include "Arp/System/NmPayload/Alarms/AlarmState.hpp"
#include "Arp/System/NmPayload/Alarms/AlarmUserParameter.hpp"

The alarm classes are included in the Arp::System::NmPayLoad::Alarms namespace. To

use a class, you have to create an instance and call the Init method.

using namespace Arp::System::NmPayload::Alarms;
AlarmAccess alarmAccess;
alarmAccess.Init("PHOENIX.CppClient");//unique name for this AlarmAccess instance

The following methods are used for sending messages:

/// Announce a new alarm to the server (e.g. for browsing in OPC UA).
/// the following fields are used:
/// alarmId is a unique name of the alarm instance on the server
/// alarmType is a name of the subtype of DiscreteAlarmType that is generated as a result of
/// this method call
/// severity is a number between 1 and 1000 where 1 is informative and 1000 is a fatal error
/// the user parameters with name and type are mapped to variables of the new AlarmType
/// returns 0 if successful, -1 if not initialized, -2 if empty string parameters
int32 AddAlarm(AlarmState& alarmState);

/// Inform the AlarmServer about a new alarm state
/// (coming alarms, going alarms / changes to sub states).
/// An alarm source can inform about state changes of its alarms.
/// Only the source should call this methods for its alarms.
/// returns 0 if successful, -1 if not initialized, -2 if empty alarmId
int32 NewAlarmState(AlarmState& alarmState);
108664_en_03 PHOENIX CONTACT 53 / 202

PLCNEXT TECHNOLOGY
/// A client can ask for acknowledgement of an alarm instance (if supported by an alarm).
/// returns 0 if successful, -1 if not initialized, -2 if empty alarmId
int32 Acknowledge(const String& alarmId);

/// A client can ask for confirmation of an alarm instance (if supported by an alarm).
/// returns 0 if successful, -1 if not initialized, -2 if empty alarmId
int32 Confirm(const String& alarmId);

You can use these methods to receive messages:

/// An alarm source the supports acknowledgable alarms should subscribe to
/// acknowledge request by a client.
/// As a result to a call of the handler function the alarm source might change
/// the state of the alarm and call NewAlarmState again.
/// Note: The provided handler function is called by a different thread!
/// returns 0 if successful, -1 if not initialized, -2 no handler function
int32 SubscribeAcknowledge(std::function<void(const String& alarmId, const String& comment, const
String& language, const String& user)> handler);

/// An alarm source the supports confirmable alarms should subscribe to confirm request by a client.
/// As a result to a call of the handler function the alarm source might change
/// the state of the alarm and call NewAlarmState agein.
/// Note: The provided handler function is called by a different thread!
/// returns 0 if successful, -1 if not initialized, -2 no handler function
int32 SubscribeConfirm(std::function<void(const String& alarmId, const String& comment, const
String& language, const String& user)> handler);

/// A client can subscribe to AddAlarm calls
/// (used e.g. by the OPC-UA Server to show the alarms in the address space).
/// Note: The provided handler function is called by a different thread!
/// returns 0 if successful, -1 if not initialized, -2 no handler function
int32 SubscribeAddAlarm(std::function<void(const AlarmState& alarmState)> handler);

/// A client can subscribe to NewAlarmState calls to track the state of alarms.
/// Note: The provided handler function is called by a different thread!
/// returns 0 if successful, -1 if not initialized, -2 no handler function
int32 SubscribeNewAlarmState(std::function<void(const AlarmState& alarmState)> handler);

The alarm status is held in the “AlarmState” structure:

// State with sub states of an alarm.
class AlarmState
{
public:
 // unique Id of the alarm instance within the PLC
 String AlarmId;
 // type of the alarm. Use as key to lookup a localized text for the alarm message.
 String AlarmType;
 // optional message (if Message is empty the AlarmType is the key retrieval of a translated message)
 String Message;
 // indication if the alarm condition is true
 bool ActiveState;
 // timestamp for the last change of ActiveState
 DateTime ActiveStateChanged;
 // acknowledged state of the alarm (the user has seen the alarm)
 bool AckedState;
 // timestamp for the last change of AckedStateChanged
 DateTime AckedStateChanged;
54 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
 // confirmed state of the alarm (the user has resolved the problem)
 bool ConfirmedState;
 // timestamp for the last change of ConfirmedStateChanged
 DateTime ConfirmedStateChanged;
 // the server wants to hide the alarm
 bool SuppressedState;
 // timestamp for the last change of SuppressedState
 DateTime SuppressedStateChanged;
 // severity between 1 and 1000 (1 = information; 1000 = fatal error)
 int16 Severity;
 // true to indicate that the alarm should be displayed to the client
 bool Retain;
 // timestamp for the last change of RetainChanged
 DateTime RetainChanged;
 // timestamp for the last change of AlarmChanged
 DateTime AlarmChanged;
 // User parameters
 std::vector<AlarmUserParameter> UserParameters;
};

2.11.3 OPC UA server

The OPC UA server is the typical interface for accessing alarms. Here, alarm messages are

mapped to OPC UA alarms.

Registered alarms In the OPC UA Adress Space, you will find the alarms in the “Root/Objects/Server/Alarms”.

Here, all registered alarms are displayed with their alarm ID. Below, you will see the alarm

status, with “ActiveState”, “AckedState” or “Retain” as OPC UA properties.

Alarm types The alarm types are written as subtypes of the “DiscreteAlarmType”. You will find them in

the OPC UA Address Space under “Root/Types/EventTypes/BaseEventType/Condition-

Type/AcknowledgeableConditionType/AlarmConditionType/DiscreteAlarmType”.

Subscribing to events If you wish to be notified about alarm status changes, you can create an OPC UA subscrip-

tion and subscribe to the “Root/Types/EventTypes/BaseEventType/ConditionType/Ac-

knowledgeableConditionType/AlarmConditionType/DiscreteAlarmType” object. The sub-

scription will then send events about all alarm status changes.

Acknowledging and con-

firming alarms

Alarms are acknowledged and confirmed via the standard OPC UA alarm function. Note

that the status change takes place in the alarm source (e.g., in the PLC program). Only after

the alarm source has implemented the request for acknowledgement/confirmation, the

OPC UA server will send the new event with the updated state (“AckedState” = TRUE, or

“ConfirmedState” = TRUE).

Filtering alarms During the OPC UA subscription, you can specify which alarm properties are to be sent with

the event. Here, you can also include the user parameters, so that these values are trans-

mitted consistently with the alarm from the source to the client.
108664_en_03 PHOENIX CONTACT 55 / 202

PLCNEXT TECHNOLOGY
2.12 Notification manager

The Notification manager enables sending and receiving of notifications between compo-

nents on a controller. Notifications are messages referring to special events. They are iden-

tified via a name and can transport user data (payload). User data is information data with-

out control or protocol information (no process data, no real-time requirements). Both the

PLCnext Technology firmware and user-defined components can send notifications.

A sender can register a notification with a notification name with the Notification manager

and thus make it known. Then, the sender can send notifications. One or several recipients

subscribe under one notification name and receive all notifications that are published under

this or a subordinate name. Notification names are structured hierarchically. When a part of

the name is indicated, all subordinate notifications can be received. Communication can be

from one component to one or several recipients. As a basis, the Notification manager uses

RSC services to transmit messages between the components.

Figure 2-33 Notification manager

The Notification manager is suitable, e.g., for the following scenarios:

– Network settings have been changed

– Network interface up/down (link up/link down: connection established/interrupted)

– New component added

– Detected error, exception in one component

For additional information on using the notification manager in a C++ component, please

refer to Section “Notifications” on page 147.

2.12.1 Notifications of the PLCnext Technology firmware

Sender
Notification

Manager

Subscriber A

Subscriber B

Notification

subscribe/unsubscribe

register
Notification

Notification
unregister

send

Table 2-6 Notifications triggered by the firmware

NotificationName SenderName Severity PayloadTypeName PayloadString

Arp.Device.Interface.Ether-

netLinkStateChanged

Device interface Info Arp::System::NmPayload::Device::Ether-

netLinkStatePayload

Link state changed: interface {number},

port {number}, status: {"Up"|"Done"}

Arp.Device.Interface.Exten-

sionModulesState

Device interface Info Arp::System::NmPayload::Device::PciDe-

viceStatePayload

Extension device status: {"OK"|"Diagno-

sis"|"Error"}

Arp.Device.Interface.Net-

workConfigurationChanged

Device interface Info Arp::System::NmPayload::Device::Net-

workConfigurationChangedPayload

Configuration of network interface {num-

ber} changed: {Parameter} = {Value}
56 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Arp.Device.Interface.Net-

workConfigurationFailed

Device interface Error Arp::System::NmPayload::Device::Net-

workConfigurationChangedPayload

Configuration of network interface {num-

ber} failed: {Parameter} = {Value}

Arp.Device.Interface.Sd-

CardStateChanged

Device interface Info Arp::System::NmPayload::Device::Sd-

CardStateChangedPayload

sd card state changed: sdCardId {"1"},

state {"true"|"false"}

Arp.Io.PnC.ArAbort Arp.Io.PnC Info Arp::System::NmPayload::Io::Profinet-

Stack::MessageWithStationNamePayload

"Connection to device established: {Sta-

tionName}" |

"Connection to device with differences es-

tablished: {StationName}"

Arp.Io.PnC.ArReady Arp.Io.PnC Info Arp::System::NmPayload::Io::Profinet-

Stack::MessageWithStationNamePayload

Connection to device aborted: {station-

Name}

Arp.Io.PnC.PnStationStat-

eChanged

Arp.Io.PnC Internal Arp::System::NmPayload::Io::Profinet-

Stack::PnStationStatePayload

Led state changed: Arp.Io.PnC (Control-

ler), BF={"On"|"Off"}, SF={"On"|"Off"}

Arp.Io.PnC.ResetToFacto-

ryDefaults

Arp.Io.PnC Info Arp::System::Nm::StringPayload This station is reset to factory defaults.

Arp.Io.PnC.SetInterfaceAd-

dress

Arp.Io.PnC Info Arp::System::NmPayload::Io::Profinet-

Stack::InterfaceAddressPayload

Interface address changed to: IP=x.x.x.x

Netmask=x.x.x.x Gateway=x.x.x.x IsVola-

tile={"true"|"false"}

Arp.Io.PnC.SetStationName Arp.Io.PnC Info Arp::System::NmPayload::Io::Profinet-

Stack::MessageWithStationNamePayload

The station name is set to: {StationName}

Arp.Io.PnD.ArAbort Arp.Io.PnD Info Arp::System::Nm::StringPayload "Connection to device established: {Sta-

tionName}" |

"Connection to device with differences es-

tablished: {StationName}"

Arp.Io.PnD.ArReady Arp.Io.PnD Info Arp::System::NmPayload::Io::Profinet-

Stack::MessageWithStationNamePayload

Connection to device aborted: {station-

Name}

Arp.Io.PnD.PnStationStat-

eChanged

Arp.Io.PnD Internal Arp::System::NmPayload::Io::Profinet-

Stack::PnStationStatePayload

Led state changed: Arp.Io.PnD (Device),

BF={"On"|"Off"}, SF={"On"|"Off"}

Arp.Io.PnD.ResetToFacto-

ryDefaults

Arp.Io.PnD Info Arp::System::Nm::StringPayload This station is reset to factory defaults.

Arp.Io.PnD.SetInterfaceAd-

dress

Arp.Io.PnD Info Arp::System::NmPayload::Io::Profinet-

Stack::InterfaceAddressPayload

Interface address changed to: IP=x.x.x.x

Netmask=x.x.x.x Gateway=x.x.x.x IsVola-

tile={"true"|"false"}

Arp.Io.PnD.SetStationName Arp.Io.PnD Info Arp::System::NmPayload::Io::Profinet-

Stack::MessageWithStationNamePayload

The station name is set to: {StationName}

Arp.Plc.Domain.PlcMan-

ager.StateChanged

PLC Info Arp::System::NmPayload::Plc::PlcStat-

eChangedPayload

Plc state changed:

{"None"|"Ready"|"Stop"|"Run-

ning"|"Halt"|"Changing","Warning"|"Er-

ror"|"SuspendedBySwitch"|"DcgNotPossi-

ble"|"DcgRealTimeViolation"} ==>

{"None"|"Ready"|"Stop"|"Run-

ning"|"Halt"|"Changing","Warning"|"Er-

ror"|"SuspendedBySwitch"|"DcgNotPossi-

ble"|"DcgRealTimeViolation"}

Arp.Plc.Esm.Excep-

tion.Arp.Plc.Esm

Arp.Plc.Esm Error Arp::System::NmPayload::Plc::Exception-

InformationPayload

Exception Information typeId={} subTy-

peId={} subType={} taskName={} program-

Name={} information={} extendedInforma-

tion={}

Arp.Service.NotificationLog-

ger.ClosingArchive

NotificationLogger Info Arp::System::NmPayload::NotificationLog-

ger::MessageWithArchiveNamePayload

Closing archive '{ArchiveName}'.

This entry is made during download of the

firmware. For the time being, ArchiveName

is always "Default". Might not be made

during voltage drops (depending on the de-

vice).

Arp.Ser-

vices.Alarms.Log.Acknowl-

edgeRequest.eUAServer

eUAServer Internal Arp::System::Nm::StringPayload See alarms

Table 2-6 Notifications triggered by the firmware

NotificationName SenderName Severity PayloadTypeName PayloadString
108664_en_03 PHOENIX CONTACT 57 / 202

PLCNEXT TECHNOLOGY
Arp.Ser-

vices.Alarms.Log.AddA-

larm.eUAServer

eUAServer Internal Arp::System::NmPayload::Alarms::Inter-

nal::AlarmPayload

See alarms

Arp.Ser-

vices.Alarms.Log.Confirm-

Request.eUAServer

eUAServer Internal Arp::System::Nm::StringPayload See alarms

Arp.Ser-

vices.Alarms.Log.New-

State.eUAServer

eUAServer Internal Arp::System::NmPayload::Alarms::Inter-

nal::AlarmPayload

See alarms

Arp.System.Acf.System-

Manager.Startup

SystemManager Info Arp::System::NmPayload::Acf::System-

StartupPayload

System starting up. Firmware version

{"2019.0 LTS"}

Arp.System.Acf.System-

Manager.StateChanged

SystemManager Info Arp::System::NmPayload::Acf::System-

ManagerStatePayload

SystemManager state changed:

{"None"|"Ready"|"Stop"|"Running"}, er-

ror={"true"|"false"}, warning={"true"|"false"}

Arp.System.Nm.Exception-

DuringNotify.LocalIoProcess

NotificationMan-

ager

Error Arp::System::Nm::StringPayload Only if controller has local I/Os (e.g.,

AXC F 2152)

Caught an exception during dispatching

notification '{notificationName}': {Exception

Message incl. Call-Stack}

Arp.System.Nm.Exception-

DuringNotify.MainProcess

NotificationMan-

ager

Error Arp::System::Nm::StringPayload Caught an exception during dispatching

notification '{notificationName}': {Exception

Message incl. Call-Stack}

Arp.System.Nm.Exception-

DuringNotify.ProfinetPro-

cess

NotificationMan-

ager

Error Arp::System::Nm::StringPayload Caught an exception during dispatching

notification '{notificationName}': {Exception

Message incl. Call-Stack}

Arp.System.Nm.Subscri-

beToNotRegisteredNotifica-

tion

NotificationMan-

ager

Warning Arp::System::Nm::NmSubscribeFailed-

Payload<Arp::System::Nm::NmSubscri-

beToNotRegisteredPayload>

A subscriber subscribed to not registered

notification name: {notificationName}

Arp.System.Nm.Subscribe-

ToUnregisteredNotification

NotificationMan-

ager

Error Arp::System::Nm::NmSubscribeFailed-

Payload<Arp::System::Nm::NmSubscribe-

ToUnregisteredPayload>

A subscriber subscribed to unregistered

notification name: {notificationName}

Table 2-6 Notifications triggered by the firmware

NotificationName SenderName Severity PayloadTypeName PayloadString
58 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.13 Notification logger

The Notification logger enables the saving of notifications in a database. The saved notifi-

cations can be displayed and evaluated using external tools. The Notification logger regis-

ters with the Notification manager for all configured notifications and thus receives all appli-

cable messages that are sent. The Notification logger can be used for analyzing firmware

and applications.

The PLCnext Technology SDK contains helpful classes for the Notification logger. If you

want to use a class, integrate it into your program via an #include command, (e.g.,

#include Arp/Services/NotificationLogger/Services/INotificationLoggerSe
rvice.hpp). Further information on the classes and their applications is available directly in

the code commentary.

2.13.1 Displaying notifications in the PLCnext Engineer cockpit

The notifications of a controller are displayed in PLCnext Engineer in the “Cockpit” editor of

your controller.

• In the “PLANT” area, click on the controller (e.g., AXC F 2152).

• Select the “Cockpit” editor.

• Select “Notifications”.

For more detailed information, please refer to the online help for PLCnext Engineer.

2.13.2 Receiving notifications

An archive subscribes to all notifications to be received. Additionally, in an archive, filters

can be used for the notifications subscribed to, which refer to the metadata. This way you

can select which notifications are actually saved. The notification logger contains several ar-

chives that enable notifications to be saved for different issues and purposes.

2.13.3 Configuring the notification logger

If necessary, you can configure the Notification logger via a config file in XML format. To

modify the configuration manually, the XML file can be edited using any editor. If you do not

create your own configuration, the standard settings from the settings file will be used.

Changes to the configuration are automatically applied after a restart of the controller.

You will find the configuration files in the /opt/plcnext/projects/Default/Services/Notification-

Logger/*.config directory. The configuration files are imported during the start of the firm-

ware.

A configuration file for the notification logger is structured as shown in the following exam-

ple:

<?xml version="1.0" encoding="UTF-8"?>
<NotificationLoggerConfigurationDocument
xmlns="http://www.phoenixcontact.com/schema/notificationloggerconfiguration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.phoenixcontact.com/schema/notificationloggerconfiguration"
schemaVersion="1.0">
<Includes>

<Include path="$ARP_PROJECTS_DIR$/Default/" />
</Includes>

108664_en_03 PHOENIX CONTACT 59 / 202

PLCNEXT TECHNOLOGY
<Archives>
<Archive name="Default"

<Notifications>
<Notification name="Arp" />

</Notifications>
<ExclusionFilter>

<Severity Operator="LE" Threshold="Info" />
</ExclusionFilter>
<Storage path="$ARP_PROJECTS_DIR$/Default/Services/NotificationLogger/archives">

<SizeLimitation>
<FileSizeLimitation MaxFileSize="64MB" />

</SizeLimitation>
<SizeReduction>

<DeleteOldestEntires NumberOfEntriesToDelete="16" />
</SizeReduction>

</Storage>
</Archive>

</Archives>
</NotificationLoggerConfigurationDocument >

• Configure the Notification logger using the following attributes:

Integrating configuration

files

Configuration files are integrated between tags <Includes> and </Includes>.

• Use the Include path attribute to reference further files to be integrated by indicating

their path. The element can occur any number of times.

Defining an archive An archive is defined between tags <Archives> and </Archives>.

• Define the archive using the following attributes:

Attribute Description

Archive name Name of the archive. The name is used as the basis for the file names.

Notification name Name of the notification to be saved to the archive. This element can occur any num-

ber of times.

ExclusionFilter

– And

– Or

– Not

– NotificationName

– SenderName

– Severity

Specification of the input filter for notifications. This can refer to any part of the name-

space. All subordinate notifications are recorded. All notifications matching the filter

are discarded and not saved.

– AND-link of several filter elements. Contains any number of other filter elements.

– OR-link of several filter elements. Contains any number of other filter elements.

– Negation of a filter element. Contains exactly one other filter element.

– Regex attribute: Regular expression for the notification name.

Regular expressions are character strings for describing search patterns using a

syntactic standard.

– Regex attribute: Regular expression for the sender name of the notification

– Operator attribute: Comparison function: GT, GE, LT, LE, EQ;

Threshold attribute: Comparison value: Internal, Info, Warning, Error, Critical,

Fatal
60 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.13.4 Saving notifications

Saving the notifications The Notification logger uses one or several archives for registering, saving and querying no-

tifications. It provides a uniform interface to these archives and enables the configuration of

the archives via the configuration files. The notifications are permanently stored in an

SQLite database. This way, the file is not system-oriented and, after copying it to another

system, can be opened and processed with the appropriate tools. The pre-defined data-

base is available on the file system of your controller at /etc/plcnext/logs/default.sqlite. The

archives offer functions for acquiring and filtering incoming notifications as well as for que-

rying and deleting. Using different archives makes it possible to save notifications for differ-

ent issues and purposes. For example:

– Firmware diagnostics

Short-term saving of firmware events for diagnostics by the service.

– Network diagnostics

Saving of diagnostic messages from network components over a short period for diag-

nosing disconnections or sporadic delays.

– Application diagnostics

Saving notifications of the application program, e.g., malfunctions of machines, refilling

of consumables, error messages by integrated aggregates.

2.13.5 Querying notifications

Saved notifications can be queried via RSC interfaces. You can use filter criteria for the

query in order to specify the query. You can query all archives or the notifications of one spe-

cific archive. To do so, use the Arp/Services/NotificationLogger/Services/INoti-
ficationLoggerService.hpp interface. Further information on the classes and their ap-

plications is available directly in the code commentary.

Use the QueryStoredNotifications method to query saved notifications. You can limit

the query using the following parameters:

Storage
– path

– SizeLimitation

– FilesizeLimitation

– SizeReduction

– DeleteOldestEntries

Specification of the persistent storage of the archive

– Path for saving the archive files

– Limitation of file size

– MaxFilesize attribute: Maximum storage space in bytes; positive integer re-

quired, permitted suffixes: kB (*1024), MB (*1048576)

– Action for reducing the file size. The action is executed as soon as SizeLimita-
tion is violated.

– NumberOfEntriesToDelete attribute: Number of elements to be deleted,

positive integer

Attribute Description

Table 2-7 Parameters

Parameter Data type Description

archives String[] List of names of archives to be queried. If this list is empty, all archives

with sufficient access rights are queried.

filter NotificationFilter Specification of the filter for the query
108664_en_03 PHOENIX CONTACT 61 / 202

PLCNEXT TECHNOLOGY
If using RSC, the filters are described by a structure with reference values or regular expres-

sions. The limits are part of the specified area. The individual criteria are ANDed.

The values are returned via the StoredNotification struct object. The object includes the

following fields:

limit int32 Maximum number of notifications to be returned

sortOrder SortOrder Sorting criterion of the query

language String Desired language of user data (de, en_GB, etc.).

Currently not supported.

Table 2-7 Parameters

Parameter Data type Description

Table 2-8 INotificationLoggerService - Struct: NotificationFilter

Field Data type Description

StoredIdLowerLimit uint64 Lower limit of the StoredId (>=1), is ignored if = 0

In the notification logger, a notification is clearly identified by a Store-
dId (uint64). The StoredId is assigned by the notification logger when

adding the notification to the input buffer.

StoredIdUpperLimit uint64 Upper limit of the StoredId (>=1, <=18446744073709551615, max.

uint64), is ignored if = 0

NotificationNameRegExp String Regular expression for the notification name. Is ignored if field is empty.

SenderNameRegExp String Regular expression for the sender name. Is ignored if field is empty.

TimestampBefore String Oldest applicable notification. Is ignored if field is empty. The format

complies with ISO 8601 plus indication of microseconds.

YYYY-MM-DDThh:mm:ss.SSSSSS

TimestampAfter String Latest applicable notification. Is ignored if field is empty. The format

complies with ISO 8601 plus indication of microseconds. YYYY-MM-
DDThh:mm:ss.SSSSSS

SeverityLowerLimit String Lowest applicable severity. Is ignored if field is empty.

SeverityUpperLimit String Highest applicable severity. Is ignored if field is empty.

Field Data type Description

Id uint64 ID of saved notifications

Archives String Name of the archive the notification was loaded from.

If the notification is present in several archives, this field contains a list

of archives separated by commas.

NotificationName String Name of the notification

SenderName String Name of the sender

TimeStamp String Time stamp of when the notification was sent. The format complies with

ISO 8601 plus additional indication of microseconds.

YYYY-MM-DDThh:mm:ss.SSSSSS

Severity String Severity of the notification

Payload String[] Translated and formatted representation of user data

PayloadXml String[] User data as XML
62 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
2.13.6 Permissions

Table 2-9 shows which user role is authorized to what extent to call the methods of the INo-

tificationLoggerService. User roles not contained in this table do not have access permis-

sion. For additional information on user roles, please refer to Section 3.9.1 on page 82.

x = Authorization available

- = No autorization

2.14 Operating system

The PLCnext Technology control platform is based on a Linux operating system with real-

time patch. Linux is a highly reliable open source operating system suitable for applications

that require a high stability. A wide range of open source software is available for the Linux

operating system, which is supported by a large community of users and developers. You

can also use this open software, software blocks, and technologies for your PLC application

(e.g., SQL server). PLCnext Technology uses the Linux operating system and extends it by

the functions of a PLC such as the cyclic processing of tasks and cycle-consistent data ex-

change. Core changes or extensions are not possible. To add functions to the system, the

user must compile and, if necessary, execute installations with “root” rights.

The operating system features the following components and services:

– Firewall (nftables is used for the firewall. The firewall can be configured via WBM, see

Section 3.9.3 on page 95.)

– OpenVPN

– strongSwan

– SSH/SFTP

– NTP

– DNS

2.14.1 Directories of the firmware components in the file system

PLCnext Controllers work with a Linux operating system. You can access the controller via

SFTP or via SSH, view the directories and files in the file system (on the internal parameter-

ization memory and on the SD card), and modify them if necessary.

Table 2-9 Authorizations for calling of methods of the INotificationLoggerService

Role QueryStoredNotifications

QueryNotifications

DeleteNotifications ListArchives Other

Admin x x x x

Engineer x x x -

Commissioner x - x -

Service x - x -

DataViewer x - x -

DataChanger x - x -

Viewer x - x -
108664_en_03 PHOENIX CONTACT 63 / 202

PLCNEXT TECHNOLOGY
Directories and files that are provided by Phoenix Contact (also through firmware updates)

are stored on the internal parameterization memory of the controller.

If you make changes to the directories or files, the Linux operating system generates an

overlay filesystem. The directory structure depends on whether you operate the controller

with or without an SD card:

Operation without an SD

card

If you make changes to the directories or files on the internal parameterization memory, the

Linux operating system generates an overlay file system here.

Some controllers have to be operated with an SD card.

• Check this in the user manual of our controller.

Operation with an SD card If you operate the controller with an SD card, the overlay file system is generated on the SD

card.

Settings that you have configured yourself (e.g., network configuration, project bus config-

uration, PLCnext Engineer project, etc.) are also saved to the SD card.

Table 2-10 Directory structure on the internal parameterization memory and the SD

card

Directory in the root file system Content

/usr/local/lib Directory for storing additional open source librar-

ies that are used by customized C++ programs.

For additional information on programming the

controller with C++, please refer to Section 6,

“Creating programs with C++”.

/usr/share/common-licenses License information on the individual Linux pack-

ages of the controller

/opt/plcnext Home directory of the “admin” Linux user and

working directory of the device firmware

Files written by the application program are

stored in this directory if the specified file name

does not contain a memory path.

/opt/plcnext/logs Directory for storing the log files of the

diagnostic logger as well as the database of the

notification logger

Here, you will find the Output.log file. It contains

information on the startup behavior of the firm-

ware, status and error messages as well as warn-

ing notes that help you find the source of error.

/opt/plcnext/projects Directory for storing project folders and files

/opt/plcnext/projects/PCWE Directory for storing PLCnext Engineer projects

All files and subdirectories in this directory are

managed exclusively by PLCnext Engineer.

• Do not make any changes to this directory.

/opt/plcnext/Security Directory for storing certificates

(IdentityStores and TrustStores)

/opt/plcnext/Security/Certificates/

https

Directory for storing HTTPS certificates
64 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Using SFTP to access the

file system

The file system is accessed via the SFTP protocol. SFTP client software is required for this

(e.g., WinSCP).

Access to the file system via SFTP requires authentication with a user name and password.

The following access data is set by default with administrator rights:

User name: admin

Password: printed on the controller

2.14.2 System time

2.14.2.1 NTP (Network Time Protocol)

Server An ntpd (Network Time Protocol daemon) is included in the operating system for time syn-

chronization. It is possible to connect to other NTP servers or to start your own server.

Client The NTP service from ntp.org (Network Time Protocol Project) is integrated into the operat-

ing system. This service can be configured via the /etc/ntp.conf configuration file. As an

admin user, you have sufficient rights to modify the data. The changes are adopted after re-

starting the ntp daemon.

• Execute the sudo /etc/init.d/ntpd script.

The changes made in the configuration file will be active after the next controller restart.

In the standard configuration, the operating system time is synchronized with the Real-Time

Clock (RTC) installed in the hardware.

You have the option of specifying IP addresses and names in the configuration.

Additional

information

– You will find a general introduction to the Network Time Protocol daemon (ntpd) at

https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html.

/opt/plcnext/apps All active apps are mounted to this directory.

The directory is part of the PLCnext Store.

/opt/plcnext/installed_apps Directory for storing all installed

app containers.

The directory is part of the PLCnext Store.

/opt/plcnext/lttng Directory for storing the default configuration files

for tracing via LTTng

/opt/plcnext/backup Directory for download change processes

The directory is used to create a backup of the

project folder. In case of an error, the content of

the backup folder is restored.

/opt/plcnext/retaining Directory for storing remanent data

/opt/plcnext/shadowing Directory for the internal storage of copies of C++

user libraries that were configured and down-

loaded in PLCnext Engineer.

/opt/plcnext/profinet Directory for storing temporary PROFINET files

Table 2-10 Directory structure on the internal parameterization memory and the SD

card

Directory in the root file system Content
108664_en_03 PHOENIX CONTACT 65 / 202

https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html
https://www.eecis.udel.edu/~mills/ntp/html/ntpd.html

PLCNEXT TECHNOLOGY
– You will find a detailed description of the configuration options at

https://www.eecis.udel.edu/~mills/ntp/html/confopt.html.

2.14.2.2 Changing the system time via the shell

As an alternative to synchronization with an NTP server, you can also change the system

time manually via the shell. Authentication with the user name and password is necessary

for SSH access to the shell. The following access data is set by default with administrator

rights:

User name: admin

Password: printed on the controller.

Requesting the system

time

• Open the shell.

• Request the system time via the date command.

Setting the system time • Enter shell command sudo date -s "YYYY-MM-DD hh:mm:ss".

– YYYY: Year

– MM: Month

– TT: Day

– hh: Hours

– mm: Minutes

– ss: Seconds

2.14.2.3 Setting the system time in PLCnext Engineer

You can also set the system time using the PLCnext Engineer software. Access via

PLCnext Engineer requires authentication with the user name and password.

• In the “PLANT” area, click on “PLCnext”.

• Select the “Online Parameters” editor.

• Enter the desired values for the date and time in the corresponding input fields.

Figure 2-34 Setting the system time in PLCnext Engineer

2.14.3 OpenVPN™ client

With the OpenVPN™ software, you have the option of establishing a virtual private network

(VPN) and therefore a secure connection via an unsecure network. The data is encrypted

using suitable protocols.

A description on how to set up a VPN tunnel using openVPN™ is available in the PLCnext

Community at plcnext-community.net.
66 / 202 PHOENIX CONTACT 108664_en_03

https://www.eecis.udel.edu/~mills/ntp/html/confopt.html
https://plcnext-community.net/index.php?option=com_content&view=article&id=202:configuring-openvpn-on-plcnext-axc-2152&catid=44&Itemid=261&lang=en

Structure of PLCnext Technology
2.14.4 IPsec (strongSwan)

IPsec is an encryption and authentication protocol with which VPN connections (Virtual Pri-

vate Networks) can be established. StrongSwan is an implementation of the IKE (Internet

Key Exchange) protocol and can be used for VPN connections via IPsec.

For details, please refer to http://www.strongswan.org.

AXC F 2152 configuration

notes

You can edit the /etc/ipsec.conf configuration file with admin user rights.

• Use the following commands to start, stop and restart the daemon:

– Start: sudo ipsec start
– Stop: sudo ipsec stop
– Restart: sudo ipsec restart

• Use the following command to call the status: sudo ipsec status

Configuration examples Configuration example are available at https://wiki.strongswan.org.

2.14.5 Text editors

“Nano” and “Vim” are installed on the controller as text editors. When you are connected to

the controller via the SSH console, you can call the desired editor via the command line.

• To open a file with the desired editor, enter nano <file name> or vim <file name>.

Nano The “Nano” text editor is easy to use and is therefore recommended for inexperienced us-

ers.

Vim The “Vim” text editor has an extended range of functions and is a popular editor in the Linux

environment.

2.14.6 User rights

When a PLCnext user logs into the SSH console with the “admin” user role, the user is also

recognized with the same name and password by the Linux system. The user is therefore

assigned to the “plcnext” Linux group. Files that this user may read, write and/or execute are

assigned to the “plcnext” group in the file system. In addition to the Linux user rights, the

PLCnext Technology firmware also has its own user management of which the configura-

tion is described in Section ““User Authentication” page” on page 82.

Executing Linux commands that require higher rights is made possible for the users via

sudo. Which Linux commands the PLCnext users are allowed to execute via sudo is config-

ured in the Linux system.

The following rights are available:

Table 2-11 User rights

Rights “plcnext” group admin sudo required

Setting and inspecting IP settings (including ifconfig,

ping, netstat, etc.)

x x x (ifconfig)

Configuring the firewall x x

Starting/stopping the firewall (init script) x x x

Inspecting the firewall with nft x x x
108664_en_03 PHOENIX CONTACT 67 / 202

http://www.strongswan.org
https://wiki.strongswan.org/projects/strongswan/wiki/ConfigurationExamples

PLCNEXT TECHNOLOGY
Configuring VPN (IPsec and OpenVPN™) x

Starting/stopping VPN services (IPsec and Open-

VPN™)

x x

Editing the “Default” PLCnext folder for individual ACF,

ESM, GDS configurations, and *.so

x x

Starting/stopping the PLCnext Technology firmware

processes

sudo /etc/init.d/plcnext start|stop|restart

x x

Reading PLCnext log files x x

Calling and configuring TOP/HTOP x x

Firmware update via RAUC x

Firmware update via update script

sudo update-plcnext
x x

Configuring the NTP server x x

Setting the root password with passwd x

Requesting the system time with date x x

Setting the system time with sudo date -s x x x

Restarting/shutting down the controller with reboot or

shutdown
x x

Write access to /opt/plcnext and /opt/plcnext/projects x x

Recording network traces with tcpdump x x x

Starting the gdbserver with root rights

(see also PLCnext Community)

x x

Resetting to factory defaults

sudo recover-plcnext 1

See also “Factory reset” on page 72

x x

Table 2-11 User rights

Rights “plcnext” group admin sudo required
68 / 202 PHOENIX CONTACT 108664_en_03

https://plcnext-community.net/index.php?option=com_content&view=article&id=178:remote-debugging-attach-to-process&catid=48&Itemid=274&lang=en

Structure of PLCnext Technology
2.14.7 Root rights

PLCnext Controllers are supplied with a preset admin user. This enables access to the most

important functions. For some settings, you require advanced rights, e.g., to configure set-

tings for remote debugging of C# code. To this end, create a user with root rights.

Creating a root user • Configure the connection settings in WinSCP.

• Connect to the controller by entering the IP address of the controller and the password

for the admin user.

• Click “Login”.

Figure 2-35 Connecting WinSCP to the controller (1)

NOTE: Risk of damage to equipment

If safety functions are switched off, the controller must not be used for live operation.

• Ensure that there is no risk of damage to the equipment or personal injury.

NOTE: Changes to the firmware

As a “root” user, you have the right to make any change on the controller. Root rights are

therefore only suitable for qualified application programmers and software engineers with

relevant experience.

• Make sure you do not make changes to the PLCnext Technology firmware.
108664_en_03 PHOENIX CONTACT 69 / 202

PLCNEXT TECHNOLOGY
Figure 2-36 Connecting WinSCP to the controller (2)

• Subsequently, open the console by clicking the “Open in PuTTY” button.

Figure 2-37 Opening PuTTY

• Log in with the “admin” user name and the controller password. The default password

of the controller is printed on the housing.

Figure 2-38 Logging in as admin user

• Enter the sudo passwd root command.

• Enter the admin password.

• Enter a new password for the root user.

• Confirm the new password by entering it again.
70 / 202 PHOENIX CONTACT 108664_en_03

Structure of PLCnext Technology
Figure 2-39 Creating a new root user

• To end the connection, enter the exit command.

SSH login as root The SSH login as root user is prevented for security reasons. To enable direct login via SSH

for the root user, you have to configure this option in the sshd_config file.

• Open the /etc/ssh/sshd_config file using a suitable editor.

• Under # Authentication:, enable the commented out PermitRootLogin yes entry.

• Restart the SSH service with /etc/init.d/sshd restart.

2.14.8 Linux scripts of the PLCnext Technology firmware

Firmware update As of firmware version 2019.0 LTS, you can update the firmware conveniently via web-

based management of your controller. For older firmware versions, you can start the firm-

ware update via the sudo update-plcnext shell script, which you will find in the file system

of the controller.

• Download the *.zip firmware file from the download area of your controller.

• Unpack the *.zip firmware file.

• Run the *.exe setup file.

• Follow the instructions of the installation wizard.

• Open your SFTP client software (e.g., WinSCP).

• Log in as an administrator.

The following access data is set by default:

User name: admin

Password: printed on the controller

• Copy the *.raucb update file to the /opt/plcnext directory (home directory of the “admin”

Linux user).

• Open the shell using a command line tool (e.g., PuTTY or Tera Term).

• Log in as an administrator.
108664_en_03 PHOENIX CONTACT 71 / 202

PLCNEXT TECHNOLOGY
The name of the update script is the same for every controller: sudo update-plcnext. The

script is available in the file directory under /usr/sbin/. Under /usr/sbin/, you will also

find symbolic links with the respective product designation in the name, e.g., sudo update-
axcf2152.

The script executes the following operations:

1. Stopping the PLCnext Technology process.

2. Performing the firmware update.

3. Rebooting the system and deleting the firmware container.

Factory reset You can reset the controller to the default settings using a shell script. Here, a distinction is

made between two types of default settings:

– Type 1: All user-specific data is deleted (settings, programs, users, etc.). The current

PLCnext Technology firmware remains unchanged.

– Type 2: In addition to the user-specific data (type 1), the firmware of the controller is re-

set to default state.

The script is available in the controller file system. The name of the factory reset script is the

same for every controller: sudo recover-plcnext. You will find the script under

/usr/sbin/. Under /usr/sbin/, you will also find symbolic links with the respective prod-

uct designation in the name, e.g., recover-axcf2152 1 for type 1 default settings.

You can also reset your controller to type 1 and type 2 default settings via the device-spe-

cific operating elements (e.g., reset button or operating display). For additional informa-

tion, refer to the corresponding user manual.

The type 1 default settings can be restored via the “Cockpit” editor in PLCnext Engineer.
72 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
3 Web-based management (WBM)

Each PLCnext Technology controller features a web-based management (WBM). In the

WBM, you can access static and dynamic controller information and modify certain control-

ler settings. You can call up WBM via every Ethernet interface of the controller.

The WBM systems of controllers with PLCnext Technology all have the same structure and

are described generally in the following.

3.1 Establishing a connection to WBM

To establish a connection to WBM, proceed as follows:

• Open the web browser on your PC.

• In the address field, enter the URL “https://IP address of the controller” (example:

“https://192.168.1.10”).

Initial access: TLS certifi-

cate

For secure communication, the web server of the controller uses a self-signed TLS certifi-

cate automatically generated by the controller. Before the web server of the controller can

be accessed, you must authorize the TLS certificate in your web browser.

Please note:

WBM can only be called if the controller has a valid IP address. Upon delivery, the con-

troller has IP address 192.168.1.10 (Ethernet interface LAN1 in case of several Ethernet

interfaces).

If there is a PLCnext Engineer HMI application on the controller, entering URL

“https://IP address of the controller” calls the PLCnext Engineer application.

• To call WBM, enter URL “https://IP address of the controller/wbm” in this case.

Please note:

– The controller generates the TLS certificate during the boot phase.

– The certificate uses the IP address of the Ethernet interface with PROFINET control-

ler function.

– The certificate is used for all Ethernet interfaces of the controller.

– Each IP address of the controller must be authorized in the web browser before a

PLCnext Engineer HMI application can be accessed via this address and therefore

via the corresponding Ethernet interface.

– If the controller is reset to the default settings, the certificate is generated again.

– The certificate and a corresponding private key are available in the following directo-

ries of the controller file system:

– /opt/plcnext/Security/Certificates/https/https_cert.pem

– /opt/plcnext/Security/Certificates/https/https_key.pem
108664_en_03 PHOENIX CONTACT 73 / 202

PLCNEXT TECHNOLOGY
Initial access:

Welcome page

The PLCnext Technology controller welcome page is shown when the controller web server

is accessed for the first time.

Figure 3-1 WBM: Welcome page of the PLCnext Technology controller

The welcome page contains links to the following web content:

– WBM of the controller

– PLCnext Community

– PLCnext website

If you do not want the welcome page to be displayed each time the controller web server

is accessed:

• Enable the “Do not show this page in the future and go directly to the WBM” check

box.

The next time you access the controller web server, the login page of the WBM opens,

see Section 3.4.

Alternatively, you can enter URL “https://IP address of the controller/wbm”

(example: “https://192.168.1.10/wbm”) in your browser address field.

In this case, WBM is displayed immediately.

• The welcome page remains accessible via URL “https://IP address of the control-

ler/welcome”.
74 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
3.2 Licensing information on open source software

PLCnext Technology controllers work with a Linux operating system.

All license information can be called via the “Legal Information” link on every page of WBM:

• Click on the “Legal Information” link on the bottom left of the WBM page.

Licenses for all of the open source software used are shown.

3.3 Changing the language

You can change the language for the WBM user interface in the top left of the web browser

window.

Figure 3-2 WBM: Changing the language

• Click on the “Deutsch” or “English” link to change the language.

WBM then immediately switches to the desired language.

3.4 Login

The WBM login page opens when

– You access WBM for the first time.

– You have enabled the WBM User Authentication function, see Section 3.9.1.

If you disable user authentication, logging in is not necessary to access WBM. In this case,

the start page of WBM opens when WBM is accessed, see Section 3.5.

Figure 3-3 WBM: Login page
108664_en_03 PHOENIX CONTACT 75 / 202

PLCNEXT TECHNOLOGY
Initial access as an admin-

istrator

When you access WBM for the first time, log in as the administrator.

• Enter the user name “admin” in the “Username” input field.

• Enter the administrator password in the “Password” input field.

The administrator password is printed on the controller. For more detailed information,

please refer to the user manual for your controller.

• To open WBM, click on the “Login” button.

The WBM start page opens (see Section 3.5).

Logging in as a user If WBM user authentication is enabled, log in using your user details.

• Enter your user name in the “Username” input field.

• Enter your password in the “Password” input field.

• To open WBM, click on the “Login” button.

The WBM start page opens (see Section 3.5).

3.5 Start page – areas and functions

Figure 3-4 WBM: Start page

Recommended:

• Only use the administrator password for the initial login.

• Once you have logged in successfully, change the administrator password to prevent

unauthorized administrator access (see Section 3.9.1).

Please note:

After changing the access data for the administrator, it is no longer possible to log in with

the user name “admin” and the administrator password printed on the controller.
76 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
The WBM is split into the following areas:

– Information: General device information

– Diagnostics: PROFINET

– Configuration: PROFICLOUD

– Security: User authentication, certificate authentication and firewall

– Management: Firmware update of the non-safety-related device firmware

3.6 “Information” area

3.6.1 “General Data” page

On the “General Data” page, you will find general details on the device, e.g., hardware and

firmware versions, the order number, as well as manufacturer details.

Figure 3-5 WBM: “General Data” page
108664_en_03 PHOENIX CONTACT 77 / 202

PLCNEXT TECHNOLOGY
3.7 “Diagnostics” area

3.7.1 “PROFINET” page

On the “PROFINET” page, you can view information on the controller and the connected

PROFINET devices.

“Overview” tab On the “Overview” tab, you will find information on the current PROFINET function of the

controller and its IP settings.

Figure 3-6 WBM: “PROFINET” page, “Overview” tab

“Status” area In the “Status” area, you can see if the controller is currently used as PROFINET controller

and/or as PROFINET device.

“Controller details” area In the “Controller details” area, the current IP settings of the controller are displayed.

Diagnostic information on the connected PROFINET devices are available on the “Device

List” tab.
78 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
“Device list”

tab

The “Device List” tab provides an overview of the configured PROFINET devices. The over-

view contains the device names of the PROFINET devices, the current IP settings, the acti-

vation status (TRUE = active, FALSE = inactive) as well as the diagnostic state and code.

Figure 3-7 WBM: “PROFINET” page, “Device List” tab

Opening WBM of a

PROFINET device

Some PROFINET devices feature their own web-based management (WBM). You can

open WBM of a connected PROFINET device via a link to the “Device List” tab.

• In the column “Device Name”, click on the PROFINET device whose WBM you want to

open.

The WBM of the PROFINET device is opened in the web browser in a new tab.

Opening the “Device Infor-

mation” view

In the “Device Information” view, you will find certain general information, the current IP set-

tings as well as diagnostic information for each connected PROFINET device.

• In the “Details” column, click on the button.

Table 3-1 PROFINET diagnostics: possible diagnostic states

Diagnostic state Description

OK No error

Warning A warning occurred, e.g., “Maintenance Required”,

“Maintenance Demanded”, and “Diagnosis available”

Error A PROFINET bus error occurred.
108664_en_03 PHOENIX CONTACT 79 / 202

PLCNEXT TECHNOLOGY
The “Device Information” view opens (see Figure 3-8).

Figure 3-8 WBM: “PROFINET” page, “Device List” tab, “Device information” view

Update frequency for di-

agnostic data

Diagnostic data is updated with an update frequency of 1/s. The following information is up-

dated:

– Device list: The device list can be recomposed, e.g., after changing and updating the

PLCnext Engineer project.

– Diagnostic data:

– Change of connection status of the PROFINET devices.

– Diagnostic state of the PROFINET devices.

For additional information on the diagnostic code, please refer to the Appendix A 4 on

page 200.
80 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
3.8 “Configuration” area

3.8.1 “PROFICLOUD” page

The “PROFICLOUD” page provides status information on the connection of the controller to

PROFICLOUD.

You can also specify if you want to operate the controller with or without a PROFICLOUD

connection and which PROFICLOUD services you want to use.

Figure 3-9 WBM: “PROFICLOUD” page

Activating the

PROFICLOUD connection

If you want to operate the controller with a PROFICLOUD connection, you have to enable

the Proficloud service of the controller. If the Proficloud service of the controller is enabled,

the controller tries to establish a connection to PROFICLOUD.

• Enable the “Enable Proficloud Service” check box.

• Click on the “Apply” button.

The PROFICLOUD connection of the controller is enabled.

When the PROFICLOUD connection is enabled, you can specify which service you want to

use.

To protect the Proficloud configuration against unauthorized access, see Section

“Blocking the PROFICLOUD access” on page 101.

Enabling the TSD service • To transmit process data from a PLCnext Engineer project to the TSD PROFICLOUD

service, enable the “Enable Time-Series Data (TSD) Service” check box.

Enabling the PLCnext

Store service

To download apps from the PLCnext Store to the controller, the PLCnext Store service must

be enabled on the device.
108664_en_03 PHOENIX CONTACT 81 / 202

PLCNEXT TECHNOLOGY
• To enable the PLCnext Store service on the device, enable the “Enable PLCnext Store

Service” check box.

Disabling the

PROFICLOUD connection

If you want to operate the controller without a PROFICLOUD connection, you have to dis-

able the Proficloud service of the controller. In this case, establishing a connection between

the controller and PROFICLOUD is not possible due to technical reasons.

• Disable the “Enable Proficloud Service” check box.

• Click on the “Apply” button.

The PROFICLOUD connection of the controller is disabled.

3.9 “Security” area

In the “Security” area, the security-relevant settings for the controller are configured.

3.9.1 “User Authentication” page

Figure 3-10 WBM: “User Authentication” page

User authentication Enable or disable user authentication on the “User Authentication” page. When user au-

thentication is enabled, authentication with a user name and password is required for ac-

cess to certain components of the controller and certain functions in PLCnext Engineer.

When user authentication is disabled, authentication is not necessary to access WBM, the

OPC UA server of the controller, or to access the controller using PLCnext Engineer. Ac-

cess to the file system via SFTP and access to the shell via SSH requires authentication

(with administrator rights) even if user authentication is disabled.

User authentication is enabled by default. Upon delivery, the “admin” user is already created

with administrator rights.
82 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Enabling/disabling user

authentication

To enable/disable user authentication, proceed as follows:

• Click on the “Enable/Disable” button next to the “User Authentication” check box.

The “Enable/Disable User Authentication” dialog opens.

Figure 3-11 WBM: “User Authentication” page, “Enable/Disable User Authentication”

dialog

• To enable user authentication, enable the “User Authentication” check box.

• To disable user authentication, disable the “User Authentication” check box.

• Click the “Save” button to adopt the settings.

User management Via user authentication, the access data of all users authorized to access the controller is

managed and the required access permissions are assigned to each user.

The access data of all newly created users is stored on the internal parameterization mem-

ory. If you operate the controller with an SD card, the access data is saved to the SD card.

If the SD card is inserted into another controller of the same type, the access data stored on

the SD card is used for access to the controller.

Adding a user Proceed as follows to add a user:

• On the “User Authentication” page, click on the “Add User” button.

Recommended:

• Only use the administrator password printed on the controller for logging into WBM

for the first time.

• Once you have logged in successfully, change the administrator password to prevent

unauthorized administrator access.

The modified administrator access data is stored in the overlay file system on the internal

parameterization memory. If you operate the controller with an SD card, the overlay file

system is saved to the SD card.

Please note:

Enabled user authentication only provides a limited degree of protection against unautho-

rized network access.

Due to the communication interfaces of the controller, the controller should not be used in

safety-critical applications unless additional security appliances are used.

• Ensure that you always operate the controller with the latest firmware version.

Follow the security advice on unauthorized network access in Section 1.6.

When inserting the SD card into another controller please note:

If you have changed the administrator access data after logging into WBM for the first

time, the modified access data stored on the SD card is used for accessing the controller.

In this case, it is no longer possible to log in with the “admin” user name and the adminis-

trator password printed on the device.
108664_en_03 PHOENIX CONTACT 83 / 202

PLCNEXT TECHNOLOGY
The “Add User” dialog opens.

Figure 3-12 WBM: “User Authentication” page, “Add User” dialog

• Enter the user name and password into the respective input field.

• To add the user in the user manager, click on the “Add” button.

Setting a password Proceed as follows to change a user password:

• On the “User Authentication” page, click on the “Set Password” button in the line for the

desired user.

The “Set User Password” dialog opens.

Figure 3-13 WBM: “User Authentication” page, “Set User Password” dialog

• Enter the new password into the “New Password” and “Confirm Password” input fields.

• To save the new password, click on the “Save” button.

Modifying user roles You can select one or more user roles containing different permissions for each user.

These permissions control access to

– The controller SD card

– The controller using PLCnext Engineer

– The PLCnext Engineer HMI

– WBM

– The OPC UA server of the controller

To assign one or more user role(s) to a user, proceed as follows:

• On the “User Authentication” page, click on the “Modify Roles” button in the line for the

desired user (see Figure 3-10 on page 82).

The “Modify Roles” dialog opens.
84 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Figure 3-14 WBM: “User Authentication” page, “Modify Roles” dialog

• Enable the check box of the user role(s) that you would like to assign to the user.

• Click on the “Save” button to save the selected user role(s) for the user.

Table 3-2 shows the possible user roles and access permission.

x = Access permission available

- = No access permission

You can manage access permission to the PLCnext Engineer HMI application via the

HmiLevel1...10, EHmiViewer and EHmiChanger user roles. The assigned user roles

specify if and to what extend a user can read and write from/to the HMI application.

For detailed information on the security functions in a PLCnext Engineer HMI application

as well as on handling HMI user roles, please refer to the PLCnext Engineer online help.
108664_en_03 PHOENIX CONTACT 85 / 202

PLCNEXT TECHNOLOGY
Table 3-2 User roles and assigned access permissions in the various applications

Application or

component of the

controller

Access permission

User role

A
d

m
in

C
e

r
ti

fi
c

a
te

M
a

n
a

g
e

r

U
s

e
r
M

a
n

a
g

e
r

E
n

g
in

e
e

r

C
o

m
m

is
s

io
n

e
r

S
e

r
v

ic
e

D
a

ta
V

ie
w

e
r

D
a

ta
C

h
a

n
g

e
r

V
ie

w
e

r

E
H

m
iL

e
v
e

lX

F
il

e
 R

e
a

d
e

r

F
il

e
W

r
it

e
r

E
H

m
iV

ie
w

e
r

E
H

m
iC

h
a

n
g

e
r

SD card/parameter-

ization memory

SFTP access to the file system with an

SFTP client

x - - - - - - - - - - - - -

Shell SSH access to the shell

x - - - - - - - - - - - - -

PLCnext Engineer View values in the cockpit (e.g., utilization,

etc.)
x - - x x x x x x - - - - -

PLCnext Engineer Transfer a project to the controller x - - x - - - - - - - - - -

PLCnext Engineer Start (cold/warm restart) or stop the con-

troller
x - - x x x - - - - - - - -

PLCnext Engineer Restart (reboot) the controller x - - - - - - - - - - - - -

PLCnext Engineer Reset the controller to default setting type 1 x - - - - - - - - - - - - -

PLCnext Engineer View online variable values x - - x - x x x x - - - - -

PLCnext Engineer Overwrite variables x - - x - x - x - - - - - -

PLCnext Engineer Set and delete breakpoints x - - x - x - - - - - - - -

WBM View “General Data” page x - x x - - - - - - - - - -

WBM Manage users x - x - - - - - - - - - - -

WBM Edit TrustStores and IdentityStores x x - - - - - - - - - - - -

WBM Configure the firewall x - - - - - - - - - - - - -

WBM Update the firmware x - - - - - - - - - - - - -

PLCnext Engineer

HMI application

View online variable values
x - - - - - - - - - - - x -

Please note:

Authentication with a user name

and password is always re-

quired for SFTP access, even

when user authentication is dis-

abled.

Please note:

Authentication with a user name

and password is always re-

quired for SSH access, even

when user authentication is dis-

abled.
86 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Removing a user Proceed as follows to remove a user:

• On the “User Authentication” page, click on the “Remove User” button in the line of the

user to be removed.

The “Remove User” dialog opens.

Figure 3-15 WBM: “User Authentication” page, “Remove User” dialog

• Click on the “Remove” button to delete the user.

3.9.2 “Certificate Authentication” page

The “Certificate Authentication” page is used to manage certificates for secure communica-

tion of the controller. For this, the “TrustStores” and “IdentityStores” tabs are available.

On the “TrustStores” tab, you can store trusted and untrusted certificates of possible com-

munication partners.

On the “IdentityStores” tab, you can store your own certificates.

PLCnext Engineer

HMI application

Overwrite variables
x - - - - - - - - - - - - x

OPC UA client View online variable values x - - x - x x x x - - - - -

OPC UA client Overwrite variables x - - x - x - x - - - - - -

OPC UA client Read files x - - - - - - - - - x
1

- - -

OPC UA client Write files x - - - - - - - - - - x
2

- -

1
FileReaders can only read files via an OPC UA client if the OPC UA file transfer is activated in PLCnext Engineer (for additional information, please

refer to the PLCnext Engineer online help).

2
FileWriters can only write files via an OPC UA client if the OPC UA file transfer is activated in PLCnext Engineer (for additional information, please

refer to the PLCnext Engineer online help).

Table 3-2 User roles and assigned access permissions in the various applications

Application or

component of the

controller

Access permission

User role

A
d

m
in

C
e

r
ti

fi
c

a
te

M
a

n
a

g
e

r

U
s

e
r
M

a
n

a
g

e
r

E
n

g
in

e
e

r

C
o

m
m

is
s

io
n

e
r

S
e

r
v

ic
e

D
a

ta
V

ie
w

e
r

D
a

ta
C

h
a

n
g

e
r

V
ie

w
e

r

E
H

m
iL

e
v
e

lX

F
il

e
 R

e
a

d
e

r

F
il

e
W

r
it

e
r

E
H

m
iV

ie
w

e
r

E
H

m
iC

h
a

n
g

e
r

108664_en_03 PHOENIX CONTACT 87 / 202

PLCNEXT TECHNOLOGY
3.9.2.1 “TrustStores” tab

On the “TrustStores” tab, you can create different TrustStores, name them and add certifi-

cates and revocation lists.

Figure 3-16 WBM: “Certificate Authentication” page, “TrustStores” tab

Adding a TrustStore • To add a TrustStore, click on the button at the end of the TrustStore table.

• In the dialog that opens, enter a name in the “Name” input field.

• Then click on the “Add” button.

Deleting a TrustStore • To delete a TrustStore, click on the button to the right of the TrustStore table.

• In the window that opens, click on the “Remove” button.

Renaming a TrustStore • To rename a TrustStore, click on the button to the right of the TrustStore table.

• In the dialog that opens, enter a new name in the “Name” input field.

• Click on the “Rename” button.

Creating a TrustStore Each TrustStore is represented by two tables in WBM:

– “Certificates” table:

In this table, you can manage trusted certificates and issuer certificates.

– “CRL Lists” table:

In this table, you can manage the revocation lists (CRL - Certificate Revocation Lists)

for the corresponding TrustStore. For this, you store untrusted certificates and issuer

certificates.
88 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Adding certificates and

CRLs

You can add certificates and CRLs to a TrustStore:

• To add a certificate, click on the button below the “Certificates” table of the corre-

sponding TrustStore.

⇒ The “Add Certificate” dialog opens (Figure 3-17).

• To add a CRL, click on the button below the “CRL Lists” table of the corresponding

TrustStore.

⇒ The “Add CRL List” dialog opens (Figure 3-18).

In the “Certificates” TrustStore table, a distinction is made between the “Issuer Certificate”

and “Trusted Certificate” certificate types.

• Select the desired certificate type from the “Certificate Type” drop-down list.

Possible settings:

– Issuer Certificate

– Trusted Certificate

Figure 3-17 WBM: “Certificate Authentication” page, “TrustStores” tab, “Add Certificate”

dialog, File Upload

Input method • From the “Input Method” drop-down list, select the way a certificate or CRL is to be add-

ed to the TrustStore.

Possible settings:

– File Upload

– Text Content

“File Upload”:

You can upload a certificate or CRL.

• To upload a certificate in .pem format, select “File Upload”.

• Click on “Browse”.

• In the file explorer that opens, select the desired certificate.

• Then click on the “Add” button.

⇒ The certificate or CRL is added to the TrustStore.
108664_en_03 PHOENIX CONTACT 89 / 202

PLCNEXT TECHNOLOGY
Figure 3-18 WBM: “Certificate Authentication” page, “TrustStores” tab, “Add CRL List”

dialog, File Upload

“Text Content”:

• To add a certificate or CRL in text format, select “Text Content”.

• Enter the text in the input field.

• Then click on the “Add” button.

⇒ The certificate or CRL is added to the TrustStore.

Figure 3-19 WBM: “Certificate Authentication” page, “TrustStores” tab, “Add Certificate”

dialog, Text Content

Deleting certificates and

CRLs

• To delete a certificate or CRL from a TrustStore, click on the button of the respective

certificate or CRL.
90 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
• In the window that opens, click on the “Remove” button.

Detail view The detail views provide detailed information on every certificate and CRL:

• To open the detail view, click on the button of a certificate or CRL.

⇒ The detail view opens (see Figure 3-20 and Figure 3-21).

Figure 3-20 WBM: “Certificate Authentication” page, “TrustStores” tab, Certificate De-

tails
108664_en_03 PHOENIX CONTACT 91 / 202

PLCNEXT TECHNOLOGY
Figure 3-21 WBM: “Certificate Authentication” page, “TrustStores” tab, Certificate De-

tails

• To close the detail view, click on the “Close” button.

3.9.2.2 “IdentityStores” tab

On the “IdentityStores” tab, you can create and manage different IdentityStores.

Each IdentityStore usually contains an RSA key pair and the corresponding key certificate.

As an option, you can add further issuer certificates to an IdentityStore. The “IDevID”and

“OpcUA-SelfSigned” IdentityStores are part of the system and supplied with the controller.

Figure 3-22 WBM: “Certificate Authentication” page, “IdentityStores” tab
92 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Adding an IdentityStore • To add an IdentityStore, click on the button at the end of the IdentityStore table.

• In the dialog that opens, enter a name in the “Name” input field.

• From the “Key Pair” drop-down list, select the way the key pair is to be added.

Possible settings:

– Enter

– Generate

“Enter“

• From the “Input Method” drop-down list, select the way the key pair is to be added to

the IdentityStore.

Possible settings:

– File Upload

– Text Content

For additional information on the input method, please refer to Section “Input method” on

page 89.

Figure 3-23 WBM: “Certificate Authentication” page, “IdentityStores” tab, “Add Identity-

Store” dialog, entering a key pair

“Generate”

The controller automatically generates a key pair.

• From the “Key Type” drop-down list, select the encryption method.

Figure 3-24 WBM: “Certificate Authentication” page, “IdentityStores” tab, “Add Identity-

Store” dialog, generating a key pair

• To add the IdentityStore, click on the “Add” button.
108664_en_03 PHOENIX CONTACT 93 / 202

PLCNEXT TECHNOLOGY
Deleting an IdentityStore • To delete an IdentityStore, click on the button to the right of the IdentityStore table.

• In the window that opens, click on the “Remove” button.

Renaming an Identity-

Store

• To rename an IdentityStore, click on the button to the right of the IdentityStore table.

• In the dialog that opens, enter a new name in the “New Name” input field.

• Click on the “Rename” button.

Detail view The detail views provide detailed information on every key pair, key certificate or issuer cer-

tificate:

• To open the detail view, click on the button of a key pair or certificate (see also

Figure 3-20 “WBM: “Certificate Authentication” page, “TrustStores” tab, Certificate De-

tails”).

• To close the detail view, click on the “Close” button.

Figure 3-25 WBM: “Certificate Authentication” page, “IdentityStores” tab, Key Pair De-

tails

Downloading public keys

or key certificates

You can download the content of the public key of a key pair as a .pem file.

If a key certificate is available, you can download it as a .crt file.

• Click on the button in the last column of the respective table entry.

• Save the file to a directory of your choice or directly open the file with a suitable tool.

Setting a key pair • To set a key pair, click on the button in the last column of the table entry.

The options for setting a key pair correspond to the options in Section “Adding an Identity-

Store” on page 93.

Setting a key certificate • To set a key certificate, click on the button in the last column of the table entry.

The options for setting a key certificate correspond to the options in Section “Adding an

IdentityStore” on page 93.

Adding issuer certificates • To add an issuer certificate, click on the button below the table of the corresponding

IdentityStore.

• Select an input method. See Section “Adding certificates and CRLs” on page 89.

Deleting issuer certifi-

cates

• To delete an issuer certificate, click on the button of the certificate.

• In the window that opens, click on the “Remove” button.
94 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
3.9.3 “Firewall” page

On the “Firewall” page, you can configure the firewall of your controller.

Figure 3-26 WBM: “Firewall” page

“Reset” and “Apply” but-

tons

– “Reset”: Click on the “Reset” button to reset the firewall to default settings.

– “Apply”: Click on the “Apply” button to transfer all configured firewall settings to the

controller.

You can only open the “Firewall” page if you are logged into WBM as an administrator. For

information on user roles, please refer to Section 3.9.1 on page 82.
108664_en_03 PHOENIX CONTACT 95 / 202

PLCNEXT TECHNOLOGY
“System Message”area In the “System Message” area, responses and warnings are displayed. The following sys-

tem messages are possible:

“System Status” area If the firewall is active, you can generate an overview of all enabled firewall rules in a TXT

file in the “System Status” area.

• Click on the “Show Rules” button.

The TXT file with the activated firewall rules is generated and opened.

• To save the TXT file, click on the “Save to file” button in the open dialog.

The TXT file with the activated firewall rules is saved to the selected directory.

Figure 3-27 WBM: “Firewall” page, “Firewall Active Rules” dialog

“General Configuration”

area

In the “General Configuration” area, you can view the current firewall status (e.g., Current:

stopped), temporarily activate or deactivate the firewall, or permanently activate or deacti-

vate the firewall.

Temporarily activating or deactivating the firewall

• To temporarily activate the firewall, select the “Start” or “Restart” entry from the drop-

down list in the “Status” line.

• To activate the configuration, click on the “Apply” button.

Table 3-3 Possible system messages

System message Description

Status=Ok The configured firewall settings were successfully transferred to the

controller.

Warning A warning of the controller is issued, e.g., if one or several addi-

tional filter configurations are available in the system. The warning

contains the designations of all additionally loaded filter tables.

Error At least one firewall configuration is faulty.
96 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
The firewall is activated. This setting is no longer active after a restart of the controller.

• To temporarily deactivate the firewall, select the “Stop” entry from the drop-down list in

the “Status” line.

• To activate the configuration, click on the “Apply” button.

The firewall is deactivated. This setting is no longer active after a restart of the controller.

Permanently activating or deactivating the firewall:

• To permanently activate the firewall, enable the check box in the “Activation” line.

The firewall is activated. The firewall remains activated even after a restart of the controller.

• To permanently deactivate the firewall, disable the check box in the “Activation” line.

The firewall is deactivated. The firewall remains deactivated even after a restart of the con-

troller.

3.9.3.1 Configuring the firewall

Configuration of the firewall rules is divided into “Basic Configuration” and “User Configura-

tion”. The “Basic Configuration” tab provides pre-defined firewall rules while you can create

your own firewall rules on the “User Configuration” tab.

“Action” column The options for activating and deactivating the filter rules are available in the “Action” col-

umn on the “Basic Configuration” tab as well as on the “User Configuration” tab.

• Select a setting from the drop-down list in the “Action” column for each firewall rule:

• To activate the configuration, click on the “Apply” button.

“Basic Configuration” tab

On the “Basic Configuration” tab, the rules that are stored for the firewall upon delivery are

displayed. You can select how the respective connections are to be treated for each rule.

“ICMP Configurations” In the “ICMP Configurations”, you can specify how incoming and outgoing ICMP echo re-

quests are to be treated. Possible settings:

– “Incoming ICMP requests accepted”

Check box enabled: Incoming ICMP echo requests are accepted.

Check box disabled: Incoming ICMP echo requests are blocked.

The controller cannot be reached using a ping command.

– “Outgoing ICMP requests accepted”

Table 3-4 Settings in the “Action” column

Option Description

Accept Connections are accepted.

The connection request is accepted. The connection can be established.

Drop Connections are dropped.

There is no response to the request. The packet is dropped.

Reject Connections are rejected.

The sender receives a response via the rejected connection.

Continue The rule is not executed.

Choose this option to skip the basic rule and instead use a user-specific

rule for the port. User-specific rules are configured in the “User Configu-

ration” area.
108664_en_03 PHOENIX CONTACT 97 / 202

PLCNEXT TECHNOLOGY
Check box enabled: Outgoing ICMP echo requests are accepted.

Check box disabled: Outgoing ICMP echo requests are blocked. Ping commands can-

not be issued by the controller.

“Basic Rules” The “Basic Rules” area provides pre-defined firewall rules for different incoming connec-

tions, which you can enable or disable in the “Action” column. The configuration baseline is

stored in the /etc/nftables/plcnext-filter file in the controller file system.

The configuration baseline contains the following rules for incoming connections (“Direc-

tion”: “Input“).

• Select an action for each rule (see Section ““Action” column” on page 97):

The settings are valid for all Ethernet interfaces. A limitation to certain Ethernet interfaces is

specified via a user-specific rule in the “User Configuration” area (see Section “User config-

urations” on page 99).

With some activated firewall rules, there is a risk that accessing the controller becomes dif-

ficult due to blocked ports. Restoring access permissions can result in the loss of user data.

Therefore, please consider the following notes when configuring basic rules:

Table 3-5 Basic rules

Description Protocol Port

NTP (Network Time Protocol) UDP Port 123

Common Remoting, e.g., using

PLCnext Engineer

TCP Port 41100

SSH connections (e.g., for SSH shell connection

or SFTP connection)

TCP Port 22

HTTP TCP Port 80

HTTPS, Proficloud, eHMI (web server for eHMI

and WBM)

TCP Port 443

OPC UA TCP Port 4840

External Mode Matlab
®

 Simulink
®

 TCP Port 17725

SNMP (Simple Network Management Protocol) TCP Port 161

PROFINET uni/multicast ports UDP Ports 34962-34964

Blocking the WBM access:

If you select the “Reject” or “Drop” action for basic rule no. 5 (TCP Port 443 - HTTPS, Pro-

ficloud, eHMI), you can no longer access the WBM of the controller after activating the

rule (“Apply”). Therefore, you can no longer change the firewall rules via WBM.

– In case of a permanently started firewall (enabled “Activation” check box):

To stop the firewall in this case, you have to reset the controller to the default settings.

For more detailed information, please refer to the user manual for your controller.

Note that during a reset to the default settings, user-specific data (applications, con-

figuration, etc.) are deleted.

Once the firewall is deactivated, you can again access WBM.

– In case of a permanently stopped firewall (disabled “Activation” check box):

The firewall is stopped after restarting the controller. You can again access WBM.
98 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
User configurations

In addition or as an alternative to the basic rules, you can define and activate your own, user-

specific firewall rules for different filter categories in the “User Configuration” area. You can

create new rules, delete rules or change the order of rules using the buttons at the end of

the table.

Adding a new rule

Figure 3-28 WBM: “Firewall” page, “User Configuration” tab, “Input Rules”, adding a

new rule

You can define user-specific filter rules for specific ports, protocols and IP addresses for in-

coming (“Input Rules“) and outgoing (“Output Rules“) connections.

Observe the following when using a PROFINET controller:

If you use the controller as a PROFINET controller, you have to ensure that, with an acti-

vated firewall, “Accept” is selected for basic rule no. 9 (UDP ports 34962-34964 - PROF-

INET uni/multicast ports). Otherwise, establishing a connection to certain PROFINET

devices is not possible.

Button Function

“New Rule”: Add a new filter rule

“Delete Rule”: Delete the selected filter rule

“Move rule up/down”

Move the filter rule upwards/downwards.

The order determines the priority of the rules.
108664_en_03 PHOENIX CONTACT 99 / 202

PLCNEXT TECHNOLOGY
• For a user-specific filter rule, define the following parameters:

Figure 3-29 WBM: “Firewall” page, “User Configuration” tab, “Output Rules”, creating

user-specific firewall rules

• To activate the configured settings and transmit them to the system, click on the “Apply”

button.

If a configuration is already available in the system, it is overwritten during this process.

• To drop the current configuration and call the basic settings, click on the “Reset” button.

Changing a basic rule To change a basic rule, proceed as follows:

• In the “Basic Configuration” area, set the basic rule to “Continue” in the “Action” column.

This way, this rule is skipped.

• Now, create a new rule in the “User Configuration”, “Input Rules” area.

• Configure the rule for the protocol and the port of the basis rule from the “Basic Config-

uration” area.

Example: You can specify incoming SSH connection requests via TCP port 22 in more

detail by excluding certain IP addresses or exclusively establishing the access of some

IP addresses.

Table 3-6 User configurations

Column Description

Interface

(“Input Rules” only)

You can configure “Input Rules” specifically for an interface.

• From the drop-down list, select the desired Ethernet interface

to which the filter rule is to be applied.

The “Output Rules” apply to all interfaces.

Protocol • From the drop-down list, select the TCP, UDP, or UDPLITE

protocol or all of them.

From IP

From Port

• In the “From IP” field, enter an IP address, if applicable. In the

“From Port” field, enter the corresponding ports, if applicable.

The rule applies to connections coming in from this address. You

can specify all ports, selected ports, or a value range.

To IP

To Port

In the “To IP” field, enter an IP address, if applicable. In the “To Port”

field, enter the corresponding ports, if applicable. The rule applies

to connections going out to this address. You can specify all ports,

selected ports, or a value range.

Comment Here, enter a description of the filter rule.

Action The options described in Section ““Action” column” on page 97 can

be used as the actions for the filter rules.
100 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Blocking the PROFI-

CLOUD access

Access to the “PROFICLOUD” WBM page is not controlled via user authentication (see

Section ““User Authentication” page” on page 82). Each user with access to WBM can also

access the “PROFICLOUD” page and make settings.

To protect the PROFICLOUD configuration against unauthorized access, you can create a

user without access permission to WBM.

However, if WBM access is required, you can also block the connection to PROFICLOUD

via a firewall configuration.

• For this, create a new rule under “User Configuration” using the following parameters:

– Direction: Output

– Protocol: TCP

– Port: 443

– Action: Drop/Reject

• To activate the configuration, click on the “Apply” button.

Take into consideration that due to this firewall rule, HTTPS and HMI connections are also

blocked.

To permanently block the PROFICLOUD access for a user, you have to configure this user

without security permissions (WBM page “User Authentication”). This way, a user cannot

access the “Firewall” WBM page. The user can therefore not activate the firewall rule which

blocks access to PROFICLOUD. If the user changes the configuration on the “PROFI-

CLOUD” WBM page, this does not have any consequences as the corresponding ports are

blocked by the firewall. The device cannot establish a connection to PROFICLOUD.

⇒ If you want to generally inhibit the communication with PROFICLOUD for one user, you

have to configure this accordingly via the firewall and protect the firewall configuration

against unauthorized access.
108664_en_03 PHOENIX CONTACT 101 / 202

PLCNEXT TECHNOLOGY
3.9.3.2 Activating another firewall file

In addition to the PLCnext Technology filter table, you can activate other filter tables. This

might be necessary if you require certain functions that are not supported by the WBM con-

figuration. This additional configuration is implemented via independent filter tables. You

have to create the required functions via nftables commands. For this, you can edit a rule

set in Linux using a text editor or load the file to the PC and change it.

Figure 3-30 Example: nftables filter files

In WBM, clicking on the “Show Rules” button in the “System Status” area, all activated filter

tables are displayed.
102 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Figure 3-31 WBM: “Firewall” page, “Show Rules”, several active filter tables

If an additional filter table is active, this is displayed as a warning message in the “System

Message” area. The warning contains the designations of all additionally loaded filter ta-

bles.

Configuring the firewall with an additional filter table

• First, empty the active firmware configuration. To do so, enter the following command

in the shell:

root# nft flush ruleset
• Create another independent filter table using command nft add table <family>

<tablename>.

Example: root# nft add table ip loadfilter.

• Add an “Input Chain” of type “filter” and “hook input” to the created table. Use the follow-

ing command:

nft add chain [<family>] <table> <name> { type <type> hook <hook> [de-
vice <device>] priority <priority> \; }
Example: root# nft add chain ip loadfilter input_limiter { type filter
hook input priority 0 \; }

• Limit the network load:

– Limit the number of packets and indicate the parameters (icmp, tcp, udp, udplite,

ip) using the following command.

Example: root# nft add rule loadfilter input_limiter icmp type
echo-request limit rate 10/second accept
108664_en_03 PHOENIX CONTACT 103 / 202

PLCNEXT TECHNOLOGY
– Limit the data rate (bytes/second, mbytes/second, mbytes/minute).

Example: root# nft add rule loadfilter input_limiter limit rate 10
mbytes/second accept or

root# nft add rule loadfilter input_limiter limit rate over 10
mbytes/second drop

• When adding a rule, select the Ethernet interface to which the rule is to be applied (iif
<network interface>).

Example: root# nft add rule loadfilter input_limiter iif eth0 icmp type
echo-request limit rate over 100bytes/minute drop

• To count packets or display the throughput of bytes, use the following commands:

– For all incoming packets:

nft add rule <table> <chain> counter

Example: root# nft add rule loadfilter input_limiter counter
Note:

For “Accept” action: Accepted packets are counted.

For “Drop” action: Blocked (dropped) packets are counted.

– For a specific protocol:

nft add rule <table> <chain> counter ip protocol <protocol>
Example: root# nft add rule loadfilter

• To drop or accept the data traffic for a specific protocol, use the following commands:

nft add rule <table> <chain> ip protocol <protocol> accept/drop
Example: root# nft add rule loadfilter input_limiter ip protocol udp
accept or

root# nft add rule loadfilter input_limiter ip protocol udplite drop

Example of a simple filter file:

table ip loadfilter {
chain input_limiter {

type filter hook input priority 0; policy drop
icmp type echo-request accept
tcp dport ssh accept comment "ssh wegen Fernzugriff zulassen"

}
chain output_limiter {

type filter hook output priority 0; policy drop;
icmp type echo-request accept

}
}

General nftables commands

Table 3-7 General nftables commands

Command Description

root# nft list tables List all active filter tables

nft delete/flush/list table <table> Delete/empty/list a filter table

Example: root# nft flush table loadfilter

root# nft list table <table> --handle

nft delete rule [<family>] <table>
<chain> [handle <handle>]

Delete a rule

You can delete a rule by means of its handle number. First, use this

command to list the handle numbers of the individual rules.

Example: root# nft list table loadfilter –handle

Then, you can delete the desired rule by means of its handle number.

Example: root# nft delete rule filter input handle 90
104 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
3.10 “Administration” area

3.10.1 “Firmware Update” page

On this page, you can implement a firmware update of the controller in the admin user role.

Figure 3-32 WBM: “Firmware Update” page

To update the controller firmware, proceed as follows:

• Download the *.zip firmware file at phoenixcontact.net/product/1051328.

• Unpack the *.zip firmware file.

• Run the *.exe setup file.

• Follow the instructions of the installation wizard.

During installation, the update file (*.raucb) and the files with device-specific information will

be copied to the selected destination directory.

nft -f <filter-file> Load the content of a filter table from a file

Example: root# nft -f loadfilter.rules

nft list table <table> > <file> Save the content of a filter table to a file

Example: root# nft list table loadfilter > loadfil-
ter.rules

Table 3-7 General nftables commands

Command Description
108664_en_03 PHOENIX CONTACT 105 / 202

http://phoenixcontact.net/product/2404267

PLCNEXT TECHNOLOGY
Noting the installed firm-

ware version

The firmware version currently installed on the controller is displayed on the “General Data”

page (see Figure 3-5).

• Before updating the firmware, note the installed firmware version to be able to check lat-

er if the firmware update was successful.

Selecting a firmware file • Click on “Browse...”

• In the file explorer that opens, select the *.raucb firmware file to be installed.

• Click on the “Open” button.

The firmware file to be installed is now displayed in WBM (see Figure 3-33).

Figure 3-33 WBM: Firmware file to be installed in WBM
106 / 202 PHOENIX CONTACT 108664_en_03

Web-based management (WBM)
Starting the firmware up-

date

• To start the firmware update, click on the “Start Update” button.

The update file is transferred to the controller.

Once the file was transferred successfully, the firmware update is started.

The status of the file transfer and the status of the update process are displayed in WBM as

progress bars.

Figure 3-34 WBM: Status of the file transfer and the update process

After the firmware update, the controller is restarted automatically.

Checking the firmware

version

• After the controller was restarted, log into WBM.

• Open the “General Data” page.

• Check if the correct firmware version is displayed.

If the previously installed firmware version is displayed after the firmware update (see Sec-

tion “Noting the installed firmware version”), an error occurred during the firmware update.

• In this case, repeat the firmware update.

Please note:

The connection to the controller is interrupted during the firmware update. After the firm-

ware update, the WBM pages opened in the browser are no longer up to date.

Once the controller is fully initialized after the restart, you have to log into WBM again to

update the WBM pages.

The updated firmware version is displayed on the top right of every WBM page.
108664_en_03 PHOENIX CONTACT 107 / 202

PLCNEXT TECHNOLOGY
4 Transferring variable values to the PROFICLOUD

In PLCnext Engineer, you can define variables whose values are to be transferred as a met-

ric to PROFICLOUD. The variable values are stored in PROFICLOUD. The metrics can be

represented graphically using the open platform Grafana.

4.1 Creating variables as OUT ports

Variables that are to be transferred from a PLCnext Engineer project to PROFICLOUD have

to be created as OUT ports in PLCnext Engineer.

To create a variable in PLCnext Engineer as an OUT port, proceed as follows:

• In the “COMPONENTS” area, click on “Programming”, “Local” and then on “Programs”.

• Double-click on the desired POE from which variables are to be transferred to

PROFICLOUD.

• Select the “Variables” editor.

• Enter the variable name and data type.

• In the “Usage” column, select “OUT Port”.

• Enable the check box in the “Proficloud” column.

Figure 4-1 Creating variables as OUT ports

Note that the “Proficloud” check box has to be enabled for at least one OUT port so that

the controller can send data to PROFICLOUD.
108 / 202 PHOENIX CONTACT 108664_en_03

Transferring variable values to the PROFICLOUD
If you program your program in C++ using the PLCnext Technology Command Line Inter-

face, you have to define the OUT ports of which the values are to be transferred to PROFI-

CLOUD using attributes Output and Proficloud (//#attributes (Output|Profi-
cloud)), see Section “Creating IN and OUT ports” on page 120.

Time stamp The controller sets the time stamp for the data that is transferred to PROFICLOUD. In case

of an interrupted Internet connection, the time stamp is not affected. When the Internet con-

nection is interrupted, data is buffered in the controller. Make sure that the controller time is

set to UTC (for additional information, please refer to Section “System time” on page 65).

4.2 Preparing the controller for PROFICLOUD

Before you can transfer metrics to PROFICLOUD, you have to register the controller in

PROFICLOUD and activate the TSD PROFICLOUD service in the WBM of the controller.

To do this, proceed as follows:

Activating TSD in WBM To establish a connection to WBM, proceed as follows:

• Open the web browser on your PC.

• In the address field, enter URL “http://IP address of the controller”

(example: “http://192.168.1.10”).

If there is an HMI application on the controller, entering URL “http://IP address of the con-

troller” calls the application. To call WBM in this case, enter URL “http://IP address of the

controller/wbm”.

For information on WBM (web-based management) of your controller, please refer to Sec-

tion “Web-based management (WBM)” on page 73.

• Open the “PROFICLOUD” page in the “Configuration” area.

• Enable the check boxes for “Enable Proficloud Service” and “Enable Time-Series Data

(TSD) Service”.

On the “PROFICLOUD” WBM page, you can check the connection status to PROFICLOUD

in the “Proficloud Connection State” line of the table.

4.3 Configuring PROFICLOUD

Connection to the PROFI-

CLOUD administration

• Open the web browser on your PC.

• In the address line, enter URL “https://www.proficloud.net”.

Logging in • Enter your user name and password.

• Click the “Sign In” button to sign into PROFICLOUD.

Adding a controller • To add the controller as a PROFICLOUD device, select the “TSD Device Manager”

PROFICLOUD solution.
108664_en_03 PHOENIX CONTACT 109 / 202

PLCNEXT TECHNOLOGY
Figure 4-2 Selecting the “TSD Device Manager” PROFICLOUD solution

The “Appliances” page opens.

Figure 4-3 “Appliances” page

Registering PLCNEXT

TECHNOLOGY

• Click on the “Add” button.

• The “Create Appliance” dialog opens.
110 / 202 PHOENIX CONTACT 108664_en_03

Transferring variable values to the PROFICLOUD
Figure 4-4 “Create Appliance” dialog

• Enter the UUID of the controller in the “UUID” input field.

The UUID of the AXC F 2152 is printed on the side of the device, for example. You will also

find the UUID in WBM in the “Configuration” area on the “PROFICLOUD” page.

• Enter a unique name for the controller in the “Appliance name” input field.

• Click on the “Add” button to save your entries.
108664_en_03 PHOENIX CONTACT 111 / 202

PLCNEXT TECHNOLOGY
4.4 Displaying an overview of the PROFICLOUD device

metrics

When the controller is switched on, the metrics are automatically transferred to

PROFICLOUD.

To display an overview of all of the metrics of a PROFICLOUD device, proceed as follows:

• Select the “TSD Device Manager” PROFICLOUD solution.

The “Appliances” page opens.

• On the “Appliances” page, click on the controller of which the metrics are to be dis-

played.

The “Appliances/device name” page opens.

Figure 4-5 “Appliances/device name” page

The metrics received are shown in the “Metrics” area.
112 / 202 PHOENIX CONTACT 108664_en_03

Transferring variable values to the PROFICLOUD
4.5 Displaying the metrics graphically in Grafana

The metrics can be represented graphically using the open platform Grafana.

To display a metric graphically in Grafana, proceed as follows:

Establishing a connection

to Grafana

• Select the “TSD Device Manager” PROFICLOUD solution.

• Select the “Go to Analytics” entry in the menu.

The Grafana homepage opens.

Figure 4-6 Grafana: Homepage

Creating a new dashboard • Click on the “Home” button.

The “Home” page opens.

Figure 4-7 Grafana: “Home” page

• Click on the “New Dashboard” button to create a new dashboard.
108664_en_03 PHOENIX CONTACT 113 / 202

PLCNEXT TECHNOLOGY
The “New dashboard” page opens.

Figure 4-8 Grafana: “New dashboard” page

Selecting the display type • Click on one of the buttons to select a display type (e.g., graph, etc.).

An example display opens for the type of graphical display selected (see Figure 4-9).

Selecting a metric • To be able to select the metric to be displayed, click on “Panel Title”.

• Click on the “Edit” button.

Figure 4-9 Grafana: Example graph; editing Panel Title
114 / 202 PHOENIX CONTACT 108664_en_03

Transferring variable values to the PROFICLOUD
An area in which you are able to edit the details of the selected graphical display opens

below the example display.

• Switch to the “Metrics” tab.

• Select the metric to be displayed.

Figure 4-10 Grafana: Selecting the metric to be displayed

• Close the bottom area by clicking on the “X” button.

The selected metric is now displayed graphically.

Figure 4-11 Grafana: Graphical display of the selected metric
108664_en_03 PHOENIX CONTACT 115 / 202

PLCNEXT TECHNOLOGY
5 Structure of a C++ program

With PLCnext Technology, programs that were created in different programming languages

can be used together. For instantiation and calling by the PLCnext Technology firmware,

the programs have a uniform basis. This basis applies to all programming languages.

PLCnext Technology follows an object-oriented approach. The following base classes are

relevant for creating a C++ program for the PLCnext Technology platform.

The base classes are stored in the Phoenix Contact SDK. Derive from these base classes

to create your application.

Some sample applications programmed in C++ can be found at https://github.com/plcnext.

5.1 “ILibrary” and “LibraryBase”

In a shared object (*.so), there can be exactly one library class (singleton pattern). The

PLCnext Technology firmware initializes the *.so after it has been loaded by calling the fol-

lowing function:

extern "C" ARP_CXX_SYMBOL_EXPORT ILibrary& ArpDynamicLibraryMain(AppDomain& appDomain);

If you want to consult the PLCnext Technology SDK C++ header files in parallel while

reading this section, first install the necessary tools as described in “Creating programs

with C++” on page 151.

When naming PLCnext Technology components, observe the naming conventions in

Section “PLCnext Technology naming conventions” on page 193.

Library LibraryBase class The LibraryBase class is the smallest unit

that can be downloaded. It represents an

*.so file (shared object). One “Library” can

instantiate one or more “Components”.

Component ComponentBase class The ComponentBase class is a collection

of functions (programs) within the

PLCnext Technology platform.

One “component” can instantiate one or

more “programs”. The “Program” in-

stances can interact via their shared

“Component” instance.

Program ProgramBase class With PLCnext Technology, instances of

the ProgramBase class can be performed

in real time.

Here, the IN and OUT ports are published.

Using the PLCnCLI (see Section 6.1, “PLCnCLI (PLCnext Command Line Interface)”) or

the Eclipse
®

 add-in creates the meta configuration files (libmeta, compmeta, progmeta)

required for PLCnext Engineer as well as the following functions with a functional imple-

mentation during compiling. If you have special requirements that go beyond this, the fol-

lowing descriptions will help you understand the functions.
116 / 202 PHOENIX CONTACT 108664_en_03

https://github.com/plcnext

Structure of a C++ program
This function is implemented in such a way that the library class is created and returned as

an interface. The library object implements the “ILibrary” interface by means of derivation

from the “LibraryBase” class. “ILibrary” is defined in header Arp/System/Acf/ILibrary.hpp,

and “LibraryBase” in Arp/System/Acf/LibraryBase.hpp. The “LibraryBase” class particularly

implements a “ComponentFactory” with the “IComponentFactory” interface.

The PLCnext Technology firmware can thus create instances of the components when

loading the PLC program. In order for the PLCnext Technology firmware to be able to deter-

mine the necessary information (names of components and program types, program ports),

the library class also has to implement the “IMetaLibrary” interface (#include
“Arp/Plc/Commons/Meta/IMetaLibrary.hpp”). This interface then requires implemen-

tation of the “ITypeInfoProvider” interface (#include
“Arp/Plc/Commons/Meta/TypeInfoProvider.hpp”), whereby the firmware learns the

names of the components and program types as well as their IN and OUT ports.

The “MetaLibraryBase” class (#include
“Arp/Plc/Commons/Meta/MetaLibraryBase.hpp”) therefore expands the “LibraryBase”

class by these interfaces.

The component instances the PLCnext Technology firmware creates is defined in the

*.acf.config and *.plm.config files.

“AppDomain” and “IApplication

If you use the Eclipse
®

 add-in, the required header files are included automatically.

– “AppDomain”: Arp/System/Core/AppDomain.hpp

– “IApplication”: Arp/System/Acf/IApplication.hpp

The PLCnext Technology firmware is distributed among several operating system pro-

cesses.

“AppDomain” An “AppDomain” represents such an operating system process. If a library is to be used in

several processes, singleton implementation is performed for each process. The

“AppDomain” class is used for this. Since the PLCnext Technology firmware uses the same

mechanism for instantiation, initialization and administration of user components as it does

for core components, the “AppDomain” is also used here.

“IApplication” The operating system process is represented by the “IApplication” interface.

5.2 “IComponent” and “ComponentBase”

The basic integration of a component into PLCnext Technology is implemented by means

of derivation from the “ComponentBase” class or via the “IComponent” interface. There are

specialized components for various purposes. These specializations are performed by im-

plementing additional interfaces, which are described in the following subsections. To be

able to use the classes, you have to include (#include) the corresponding header files

(.hpp).

– “IComponent”: Arp/System/Acf/IComponent.hpp

– “ComponentBase”: Arp/System/Acf/ComponentBase.hpp

Using the PLCnCLI (see Section 6.1, “PLCnCLI (PLCnext Command Line Interface)”) or

the Eclipse
®

 add-in creates the meta configuration files (libmeta, compmeta, progmeta)

required for PLCnext Engineer as well as the following functions with a functional imple-

mentation during compiling. If you have special requirements that go beyond this, the fol-

lowing descriptions will help you understand the functions.
108664_en_03 PHOENIX CONTACT 117 / 202

PLCNEXT TECHNOLOGY
The following “IComponent” operations are called by the ACF or PLM for each component:

– void Initialize(void)

– void SubscribeServices(void)

– void LoadSettings(const String& settingsPath)

– void SetupSettings(void)

– void PublishServices(void)

In the second phase, the project configuration is loaded and set up. If an exception occurs

here, the project configuration is unloaded again and the controller starts with an empty con-

figuration. The ACF or PLM calls the following “IComponent” operations:

– void LoadConfig(void)

– void SetupConfig(void)

Initialize The component instance is initialized via the functions specified below. These have to be

implemented in the component class. For each instantiated component, the

PLCnext Technology firmware calls the following function first:

virtual void Initialize(void);

SubscribeServices Resources that have been allocated and initialized for the component in the Initialize()

function have to be enabled in the Dispose() function. Thereafter, the firmware calls the

following function for each instantiated component.

virtual void SubscribeServices(void);

Here, a component can obtain RSC services that have already been registered.

LoadSettings Subsequently, the LoadSettings() function is called. The path to the settings

(settingsPath) can be specified for the respective component instance in the *.acf.config

configuration file. The format and content of this configuration file have to be specified by

the respective component (type). The PLCnext Technology firmware does not make any

assumptions regarding these.

virtual void LoadSettings(const String& settingsPath);

SetupSettings Once the settingsPath has been specified, the settings can be applied. The following

function is used for this:

virtual void SetupSettings(void);

PublishServices The PLM does not call the PublishServices function. Creating and registering RSC ser-

vices is reserved for the core components.

virtual void PublishServices(void);

LoadConfig/SetupConfig When the project is subsequently loaded, the following functions are called:

virtual void LoadConfig(void);
virtual void SetupConfig(void);

ResetConfig The configuration of the components is reset with the following function:

virtual void ResetConfig(void);

The interface is identical for the user program and the internal user component. It is simply

called at different times.
118 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
– The PLC manager manages components that make user programs available. The PLC

manager configures them in a file referenced by “/opt/plcnext/projects/De-

fault/Plc/Plm/Plm.acf.config”.

– Internal user components are managed by the ACF (Application Control Framework)

and configured respectively in a file referenced by “/opt/plcnext/Default/De-

fault.acf.config”. The ACF generates these components when booting the firmware.

Dispose A component is stopped after calling the following function:

virtual void Dispose(void);

5.2.1 “IProgramComponent” and “IProgramProvider”

A component that can instantiate user programs implements the “IProgramComponent”

and “IMetaComponent” interfaces by means of derivation from the “ProgramComponent-

Base” class. The PLCnext Technology firmware requires these interfaces to instantiate pro-

grams and receive information on their ports.

The PLCnCLI generates the necessary code. For this, a code is generated for each compo-

nent, which then implements the “IProgramProvider” interface. If the //#program directive

is prefixed to the header of a program definition, the PLCnCLI knows which component can

instantiate which program. The next directive //#component() is used to name the corre-

sponding component.

//#program
//#component(SampleComponent)
class SampleProgram : public ProgramBase,

The corresponding header files (.hpp) are included (#include) so that the classes can be

used.

– “IProgramComponent”: Arp/Plc/Esm/IProgramComponent.hpp

– “IProgramProvider”: Arp/Plc/Esm/IProgramProvider.hpp

The component implements the “IProgramComponent” interface by means of derivation

from the “ProgramComponentBase” class. In addition, the component creates a private

member variable that is passed to the “ProgramComponentBase” class in the constructor

of the component. This member variable implements the “IProgramProvider” interface by

means of derivation from the “IProgramProviderBase” class.

The “ProgramProvider” makes the following function available for the instantiation of pro-

grams:

IProgram::Ptr CreateProgramInternal(const String& programName, const String& programType)

The PLCnext Technology firmware calls this function when loading the PLC program.

In the process, the following parameters are passed on in the way they are defined in the

*.esm.config files:

Attribute Description

programName Instance name of the program

The instance name is configured in the PLCnext Engineer task editor

or manually via the *.esm.config file.

programType Class name of the program

For each component, the *.compmeta and *.progmeta files describe

the programs (type) a component (type) can generate.
108664_en_03 PHOENIX CONTACT 119 / 202

PLCNEXT TECHNOLOGY
5.2.2 “IProgram” and “ProgramBase”

An instantiated user program implements the “IProgram” interface. As a result, a constructor

to which the instance name is passed on and the Execute() function that is called by the

ESM task during each pass are available. The PLCnCLI creates such a user program class

that inherits the “IProgram” interface from the “ProgramBase” base class by means of deri-

vation. Furthermore, the PLCnCLI enables reporting the IN and OUT ports of the program

to the GDS.

Creating IN and OUT ports The header file of your program (e.g., MyProgram.hpp) must contain the port definition. The

ports are created as public according to the following pattern.

For example:

public:
 //#port
 //#attributes(Input| ...)
 //#name(...)
 int myInPort;

A port is specified by an added attribute. The following attributes are available:

Multiple attributes are separated by the “|” separator.

E.g.: //#attributes (Input|Opc|Retain)

From the attributes, the PLCnCLI generates the meta data. If a variable does not have an

attribute, is can only be used internally by the program.

Provide variables you want to connect via the GDS with an Input or Output attribute, de-

pending on the data direction. You can use all other attributes to control the initialization be-

havior or enable visibility in OPC UA or a PLCnext Engineer visualization system. You can

also use these additional attributes without the Input or Output attributes. This way, the

variable is visible but cannot be connected via the GDS. The Proficloud attribute only

works in conjunction with the Output attribute.

The variable name is also used as the port name. If you want to name the port differently in

the GDS, you can use the //#name() directive to enter a different port name.

To be able to use the classes, you have to include (#include) the corresponding header

files (.hpp).

– “IProgram”: Arp/Plc/Esm/IProgram.hpp

– “ProgramBase”: Arp/Plc/Esm/ProgramBase.hpp

Table 5-1 Attributes for port definition

Attribute Description

Input The variable is defined as IN port.

Output The variable is defined as OUT port.

Retain The variable name is retained in case of a warm and hot restart

(only initialized in case of a cold restart).

Opc The variable is visible for OPC UA.

Ehmi The variable is visible for the PLCnext Engineer HMI.

Proficloud The variable is visible for PROFICLOUD (for OUT ports only).
120 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
5.2.3 “IControllerComponent”

A component created with the PLCnCLI is automatically derived from the

“IControllerInterface” interface. An internal user component may need individual lower-pri-

ority threads to perform longer tasks outside of the ESM task. To this end, the component

can implement the “IControllerComponent” interface in addition to “IComponent”.

The “IControllerComponent” interface defines the following two functions:

void Start (void);
void Stop (void);

If the component is managed by the PLC manager (“User Program”):

– During a cold, warm or hot restart of the PLC application, the Start() function is

called after all program objects of the component have been generated. This is an

ideal time to start individual, lower-priority threads the programs delegate tasks to.

– The Stop() function is called when the PLC application is stopped, before the pro-

grams are destroyed. At this point, the created threads can be destroyed again.

If the component is managed by the ACF (Automation Component Framework) (“Internal

User Component”):

– When the firmware is started (boot or /etc/init.d/plcnext start), the

Start() function is called after all components have been generated. This is an

ideal time to start threads which perform the component tasks.

– When the firmware is stopped (/etc/init.d/plcnext stop), the Stop() func-

tion is called before the components are destroyed.

To use this class, you have to include (#include) the corresponding header file (.hpp).

– “IProgram”: Arp/System/Acf/IControllerComponent.hpp

5.3 Several component types in the same library

Initially, the Eclipse
®

 add-in creates one component type in a library. If several component

types are to be instantiated in the same library, each component type has to be added to the

factory. To this end, every component type is introduced to the factory by calling the

AddFactoryMethod() function in the constructor of the library object. The PLCnCLI gener-

ates the required code if the //#component directive is prefixed in the header of the class

definition:

//#component
class SampleComponent : public ComponentBase,

There are two ways to instantiate components:

– “Internal User Components”, managed by the ACF, are instantiated by the

Default.acf.config (projects/Default/Default.acf.config) file.

Using the PLCnCLI (see Section 6.1, “PLCnCLI (PLCnext Command Line Interface)”) or

the Eclipse
®

 add-in creates the meta configuration files (libmeta, compmeta, progmeta)

required for PLCnext Engineer as well as the following functions with a functional imple-

mentation during compiling. If you have special requirements that go beyond this, the fol-

lowing descriptions will help you understand the functions.
108664_en_03 PHOENIX CONTACT 121 / 202

PLCNEXT TECHNOLOGY
– “User Programs”, managed by the PLM, are instantiated by the

Plm.config (/opt/plcnext/projects/Default/Plc/Plm/Plm.config) file.

When used as PLCnext Engineer library, this is performed automatically by

PLCnext Engineer, but it can also be done manually (see Section “Task configuration

via configuration files” on page 23).

5.4 PLM (Program Library Manager)

The PLM (Program Library Manager) is part of the PLC manager (see “PLC manager” on

page 16). It loads and unloads components during the runtime of the PLCnext Technology

firmware. The PLM controls the entire service life of the component instance in accordance

with the states of the controller and changes to these states by means of the

PLCnext Engineer commands:

– Cold or warm restart

– Hot restart

– Reset

– Download (a reset is implicitly performed prior to the download, however, not during

Download Changes)

5.4.1 Functions

The PLM takes on the role of creating, configuring and destroying the components that can

instantiate user programs. The application components are controlled as follows:

Table 5-2 “IComponent” (PLM) functions

Calling “IComponent” User action in PLCnext Engineer

void Initialize() – Restart

– Send project

void SubscribeServices() – Restart

– Send project

void LoadSettings(const
string & settingsPath)

– Reboot

– Send project

void SetupSettings() – Restart

– Send project

void PublishServices() The function is only called by a firmware compo-

nent, not by the PLM.

void LoadConfig() – Restart

– Cold restart

– Warm restart

– Send project
122 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
5.4.2 Configuration

PLM configuration The PLM system is configured via a configuration file. “ConfigSettings” provides the path to

the configuration file of the application libraries and components.

Configuration of

application programs

The AcfConfigurationDocument format is used to configure components that can instantiate

user programs. The Library, Component (name, type, library, isEnabled), and Settings

(path) elements are evaluated by the PLM (see Section “Configuration files” on page 17).

5.5 ACF (Application Component Framework)

The (ACF) Application Component Framework is the foundation for the

PLCnext Technology platform architecture. The ACF is a framework that enables compo-

nent-based platform development and the configurative composition of the firmware for the

devices. It can configuratively distribute the firmware to one or more processes. The ACF

enables the configurative integration of user functions into the system. This way, you can

extend PLCnext Technology devices with your own functions.

The ACF loads the various shared object files, and starts and manages the components

contained therein in the desired sequence. In PLCnext Technology, components are in-

stantiated like classes, i.e., several instances of one component type can exist. Instantiation

is performed via configuration files for the ACF.

5.5.1 Libraries

ACF libraries are loaded dynamically by the ACF via configuration. They serve as the con-

figurative extension of the system by means of platform or user functions. The ACF libraries

must be available as dynamic libraries (“shared object” or *.so) and contain one or more

ACF components. This enables the user to construct the firmware configuratively and add

functions.

ACF libraries must be implemented in accordance with a particular template. The specified

template is necessary to enable the ACF to access the code dynamically. Implementation

consists of the following elements:

– Library class (derived from “LibraryBase”), implemented as a singleton. A library single-

ton is an instance or function that exists exactly once per library, e.g.,

“ComponentFactory”.

void SetupConfig() – Reboot

– Cold restart

– Warm restart

– Send project

void ResetConfig() – Reboot

– Cold restart

– Warm restart

– Send project

void Dispose() – Send project

Table 5-2 “IComponent” (PLM) functions

Calling “IComponent” User action in PLCnext Engineer
108664_en_03 PHOENIX CONTACT 123 / 202

PLCNEXT TECHNOLOGY
– At least one component class that implements the “IComponent” interface.

– “ComponentFactory”

See Section ““ILibrary” and “LibraryBase”” on page 116 and Section ““IComponent” and

“ComponentBase”” on page 117.

Loading libraries A library is added to the ACF configuration as shown in the following example:

ACF configuration – adding a library

<?xml version="1.0" encoding="utf-8"?>
<AcfConfigurationDocument

xmlns="http://phoenixcontact.com/schema/acfconfig“
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=“http://www.phoenixcontact.com/schema/acfconfig“
schemaVersion=“1.0“ >

<Libraries>
<Library name="MyLibraryACF.Library“
binaryPath="$ARP_PROJECTS_DIR$/MyLibrary/libs/libMyLibraryACF.so“ />

</Libraries>

</AcfConfigurationDocument>

The following table lists explanations of the individual attributes:

5.5.2 Components

Components are classes in the sense of object-oriented programming. They are a part of a

library and provide a public interface to the library. They therefore facilitate access to librar-

ies with coherent functionality, and can be instantiated once or several times.

ACF components enable the PLCnext Technology platform to be extended configuratively.

The ACF components must be implemented in accordance with a particular template. The

ACF components must register with the “ComponentFactory” of the library. Furthermore,

they must implement the “IComponent” interface in order for the ACF to dynamically inte-

grate them into the firmware (see Section 5.2 ““IComponent” and “ComponentBase”“).

ACF components are instantiated once or several times. They are assigned a system-wide

unique instance name.

Adding a component Components are added to the ACF configuration as shown in the following example code:

Adding a component to the ACF configuration (example):

<?xml version="1.0" encoding="utf-8"?>
<AcfConfigurationDocument

xmlns="http://phoenixcontact.com/schema/acfconfig“
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

XML element Description

<Libraries> List of libraries

Here, libraries are listed that are to be loaded to cre-

ate components.

<Library> Definition of a library

name The name of the library referenced in a component

configuration.

binaryPath The binary path of the library that is to be loaded.
124 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
xsi:schemaLocation=“http://www.phoenixcontact.com/schema/acfconfig“
schemaVersion=“1.0“ >

<!-- Components included into /opt/plcnext/projects/Default/Default.acf.config
are managed by ACF while
Components included into /opt/plcnext/projects/Default/Plc/Plm/Plm.config
are managed by PLM

-->
<Components>

<Component name="ACFDemo" type=“MyLibraryACF.MyComponentACF“ library="MyLibraryACF"
 settings=“/opt/plcnext/projects/MyLibrary/MySettings.xml“ />

</Components>

</AcfConfigurationDocument>

The following table lists explanations of the individual attributes:

5.5.3 Configuration

ACF configuration As there is just one mechanism for the dynamic integration of components, the ACF config-

uration contains both the firmware settings and the project configuration for the user com-

ponents. The difference is in the storage location. The respective *.acf.config file is either in

the directory for the system settings or for the project configuration.

Project configuration Transferring the project configuration to the controller can be done by PLCnext Engineer,

other development tools (e.g. Eclipse
®

 or Simulink
®

 extension) or manually. Adding user

components to the system is done by configuration files of the distinct components as well

XML element Description

<Components> List of components

Here, components are listed that are to be created.

<Component> Definition of a component

name Name of the component

It must be unique throughout the entire system be-

cause all resources in the system are addressed via

the component name.

type Type name of the component

The name is composed of

<namespace>.<class>
A library can provide several component types. Typ-

ically, C++ type names are used here. The name is

used in the code to register components with the

“ComponentFactory”. This is the only dependency

between the system configuration and the source

code.

library The name of the library that contains the component

and was defined under <Libraries>.

<Settings path> Path to the component settings file

If the component requires a project configuration, the

path to the component-specific project configuration

must be specified in the settings file.
108664_en_03 PHOENIX CONTACT 125 / 202

PLCNEXT TECHNOLOGY
as the ACF configuration files (*.acf.config). These add the user components to the system.

An ARP_PROJECTS_DIR environment variable must be defined in the ACF settings for the

project directory (/opt/plcnext/projects). PLCnext Engineer requires this for downloading

the project. If an ACF system or service component has a project configuration, the config-

uration path must be specified in the component settings (*.settings, XML element

<ConfigSettings> with path attribute).

The project directory contains at least two subdirectories: “Default” and “PCWE”. The addi-

tional directory structure is constructed in the same way as the Arp component hierarchy.

Figure 5-1 Project directory

– PCWE directory

The “PCWE” folder is intended for the download via PLCnext Engineer. Files that are

stored here will be overwritten during the next download via PLCnext Engineer (see

Section 2.6.4 “Generating configuration files with PLCnext Engineer“).

– Default directory:

The “Default” folder is intended for storing further configuration files and for manual,

configurative extension of the platform components (see Section 2.6.5 “Manual config-

uration“).

5.6 Common classes

Common classes provide functions that may be helpful for programming. The

PLCnext Technology-specific common classes are made available via the

PLCnext Technology SDK. With the help of the SDK, it is possible to generate high-level-

language programs in C++ for the PLCnext Technology framework. The SDK provides Arp

firmware header files for this (“ARP SDK“). With the help of the ARP SDK, you can use com-
126 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
mon classes in your program. If you want to use a class, integrate it in your program via an

#include command. Further information on the common classes and their applications is

available directly in the code commentary.

The useful common classes mentioned in the following section are part of the

Phoenix Contact SDK, for example. The classes are encapsulated in namespaces accord-

ing to their subject areas.

5.6.1 Threading

During threading, parts of a program are executed in parallel. The “Threading” namespace

provides methods for separating a program into several strings for simultaneous execution,

thus improving the performance of the overall system.

“CpuAffinity” “CpuAffinity” is a bit mask in which one bit is available per processor core. The least signif-

icant bit represents processor core 1. If this bit is set, the scheduler may execute the thread

on this processor core. Several bits can be set simultaneously. In this case, the scheduler

decides on which processor core the thread is started, and whether it is executed during

runtime by another processor core. If the value of the parameter is 0, the scheduler can ex-

ecute the thread on every available processor core.

“Thread” One instance of this class is used to manage one thread, respectively. You must specify the

function or method that is to be executed in a thread during instantiation. If the

Thread::Start method is called, the thread is executed.

The “Thread” class selects a low priority as standard. Phoenix Contact recommends retain-

ing this priority in order not to endanger the priority structure of the various firmware and op-

erating system tasks.

“WorkerThread” In contrast to the “Thread” class, an instance of the “WorkerThread” class is executed cycli-

cally, as soon as the WorkerThread::Start method is executed. You can define cyclic ex-

ecution of the thread via the idletime parameter. The value is specified in ms.

“ThreadSettings” The “ThreadSettings” class is an auxiliary class for passing on the following thread param-

eters to a constructor of the “Thread” class:

– Name

– Priority

– CPU affinity (which CPU has been released for the execution of the task)

– Stack size (byte size)

“Mutex” Using the “Mutex” class, you can prevent data of several threads being changed simultane-

ously. The “Mutex” class instances can have two states:

– Locked

– Unlocked

Once the Mutex:Lock method has been performed, i.e., the call from the method returns,

the data is protected against modification by other threads. This state is retained until the

instance calls the Unlock() command, therefore rescinding the locked state. Therefore, a

NOTE: Error due to changed priority

You can select a priority between 0 and 99. In order to not disturb the structure of the real-

time threads, Phoenix Contact recommends priority 0. Otherwise, the stability of the firm-

ware cannot be guaranteed. Programs in ESM tasks are intended for performing time-crit-

ical tasks.
108664_en_03 PHOENIX CONTACT 127 / 202

PLCNEXT TECHNOLOGY
call is blocked until the thread which is in the Lock state is released again. To prevent a

“Deadlock”, i.e., a state in which a locked thread cannot be unlocked again, you can use the

“LockGuard” class. This class automates Lock and Unlock of a “Mutex” instance.

“RwLock” “RwLock” provides a locking mechanism for increasing performance. This class is useful if

several read accesses, but not many write accesses are necessary. The difference be-

tween “Mutex” class instances and this class is that the instances of the “RwLock” class per-

mit several simultaneous read accesses to the locked structure. Write access at the same

time, however, is not allowed. Instances of this class are therefore suitable for all data that

is often read but only rarely updated.

5.6.2 “Ipc” (inter-process communication)

The “Ipc” namespace (inter-process communication) encapsulates classes which can be

used to enable the communication between various processes on the same controller.

“Semaphore” Using the “Semaphore” class, semaphores are implemented in order to synchronize pro-

cesses or threads. In principle, semaphores are integer counters. If one of the various Wait

methods is called, the internal counter is lowered by one. If the current value of the counter

is zero when a Wait method is called, the call is blocked until a different thread on the same

semaphore instance calls the Post method (the Post method increases the internal

counter).

“MessageQueue” Using the “MessageQueue” class, data can be exchanged between processes in the form

of messages. The names of “MessageQueue” instances must begin with an “/” because

otherwise, the call from the constructor will lead to an exception. The name of a queue cor-

responds to the file path in Linux.

5.6.3 “Chrono”

The “Chrono” namespace contains classes and functions with which the temporal se-

quences within an application can be controlled and influenced. This includes high-resolu-

tion measurement of time elapsed so far, and also triggering of actions after a predeter-

mined period of time.

“Timer” The “Timer” class is a high-resolution chronometer for interval-based execution of methods.

Instances of this class are used to execute one or more methods periodically in a defined

interval. The “Timer” class calculates the next point in time at which the method is to be

called. You only have to implement the method or methods that are to be called via the

Timer definition.

5.6.4 “Io”

The “Io” namespace encapsulates all the functions necessary for working with files and fold-

ers within the file system of the underlying operating system.

“FileStream” The “FileStream” class is for stream-based editing (opening, writing, reading) of files. The

various values in the class define, for example, whether a file is to be overwritten, an already

existing file is to be opened, or a new file is to be created.
128 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
5.6.5 “Net”

The “Net” namespace encapsulates all the classes and functions that enable network-

based communication between processes on the same or separate controllers. For pro-

cesses that run on the same controller, preferably use the functions from the “Ipc” name-

space (see Section ““Ipc” (inter-process communication)” on page 128).

“Socket” The “Socket” class is an interface for Ethernet-based communication. Use instances of this

class to establish an Ethernet-to-peer connection. Currently, the UPD and TCP protocols

are supported (IPv4 only).

5.6.6 “Runtime”

The “Runtime” namespace encapsulates functions for manipulation of individual processes

that are managed by the Arp firmware.

“SharedLibrary” Using the “SharedLibrary” class, shared libraries (.so files) are dynamically published or re-

loaded in applications during runtime. If a library is successfully reloaded with the

SharedLibrary::Load method, the symbols contained (global variables, classes, meth-

ods, functions, etc.) are then known in the current program. The memory area can be re-

quested with GetFunctionAddress in order for the functions of the library to be used in the

program currently running.

Process The “Process” class is a high-level API for creating and managing new processes.

5.7 “Template Loggable”

PLCnext Technology provides a log file on the controller file system in which information on

the system behavior of the PLCnext Technology firmware, warnings, error messages, and

debugging messages are logged. You will therefore find valuable information that can help

you in finding the causes of problems.

“Template Loggable” You can include the “Template Loggable<>” template class to automatically apply a tag to

log messages. A tag can be used to determine from which component/program/... the mes-

sage originates.

To use this class, you have to include (#include) the corresponding header file (.hpp).

– “Loggable”: Arp/System/Commons/Logging.h

The following log levels are supported. For each log level, a suitable method can be called.

– Info

– Warning

– Error

– Fatal

Example call:

log.info („Info!“);

Static call Alternatively, you can also perform logging without the “Loggable” class. Messages can be

written without creating a special logger using the root logger with the static “Log” class. The

“root” tag is assigned to the message. The source of the message is thus not visible in the

log file.
108664_en_03 PHOENIX CONTACT 129 / 202

PLCNEXT TECHNOLOGY
Log::Error („Error!“);

It is also possible to pass on and format variables. Placeholders in the form of {x} are used

for the variables, where x is the index of the variable.

(„Variable a={0} b={1}“, a, b);

Diagnostic log file The “Output.log” diagnostic log file contains status information, warnings, error messages,

and debugging messages. You will find the file in the /opt/plcnext/logs folder on the file sys-

tem of your controller. The file system is accessed via the SFTP protocol. The SFTP client

software is required for this (e.g., WinSCP) (see Section “Directories of the firmware com-

ponents in the file system” on page 63).

The diagnostic log file is configured in such a way that the messages are overwritten once

the maximum file size is reached. When an error occurs, it is therefore recommended that

the file is called and evaluated as soon as possible.

The diagnostic log file contains the following message types:

– Error & Fatal: If messages of the “Error” or “Fatal” type are issued, the controller is

stopped. The errors mainly arise during startup or during execution of a user program.

– Warning: Warnings indicate potentially occurring errors.

– Information: The core components issue messages of type “Information”. These pro-

vide an overview of the system status.

Example: “Output.log” diagnostic log file:

A B C D E

18.05.07 08:24:15.830 MyLibrary.MyComponent INFO - 'MyComponent' invoked of object with instance
name 'MyLibrary.MyComponent-1'

18.05.07 08:24:15.831 Arp.Plc.Plm.Internal.PlmManager INFO - Component 'MyLibrary.MyComponent-1' from library
'MyLibrary' created.

18.05.07 08:24:15.831 MyLibrary.MyComponent INFO - 'Initialize' invoked of object with instance name
'MyLibrary.MyComponent-1'

18.05.07 08:24:15.832 MyLibrary.MyComponent INFO - 'SubscribeServices' invoked of object with in-
stance name 'MyLibrary.MyComponent-1'

18.05.07 08:24:15.832 MyLibrary.MyComponent INFO - Component 'AcfDemo' not found!

18.05.07 08:24:15.833 MyLibrary.MyComponent INFO - 'LoadSettings' invoked of object with instance
name 'MyLibrary.MyComponent-1'

18.05.07 08:24:15.833 MyLibrary.MyComponent INFO - 'SetupSettings' invoked of object with instance
name 'MyLibrary.MyComponent-1'

18.05.07 08:24:15.834 MyLibrary.MyComponent INFO - 'LoadConfig' invoked of object with instance name
'MyLibrary.MyComponent-1'

18.05.07 08:24:15.834 MyLibrary.MyComponent INFO - 'SetupConfig' invoked of object with instance name
'MyLibrary.MyComponent-1'

18.05.07 08:24:15.988 MyLibrary.MyComponent.MyProgram INFO - Added Port 'zaehler (of Data Type 8)' of instance
MyLibrary.MyComponent-1/MyProgram1

18.05.07 08:24:15.989 MyLibrary.MyComponent.MyProgram INFO - Added Port 'zaehler (of Data Type 8)' of instance
MyLibrary.MyComponent-1/P1

18.05.07 08:24:16.121 Arp.Io.Axioline.AxiolineComponent INFO - Axioline: Load configuration.

18.05.07 08:24:16.127 Arp.Io.Axioline.AxiolineComponent INFO - AxiolineComponent::LoadPlc() Path=/opt/plc-
next/projects/PCWE/Io/Arp.Io.AxlC/links.xml

A Date of the message in the format DD.MM.YY

B Time of the message in the format hh:mm:ss.ms
130 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
5.8 Using RSC services

You have the option of using the already registered RSC services of the SDK (Software De-

velopment Kit) via the “ServiceManager”. It acts as the RSC API and is used to request ser-

vices.

• Use the #include command in the header file to include the “ServiceManager” class

and the desired service interface (e.g., “IDeviceStatusService“).

Example header file: #include ServiceManager.hpp:

#pragma once
#include "Arp/System/Core/Arp.h"
#include "Arp/System/Acf/ComponentBase.hpp"
#include "Arp/System/Acf/IApplication.hpp"
#include "Arp/System/Acf/IControllerComponent.hpp"
#include "Arp/System/Commons/Logging.h"
#include “Arp/System/Rsc/ServiceManager.hpp”
#include "Arp/System/Commons/Threading/WorkerThread.hpp"
#include "Arp/Device/Interface/Services/IDeviceStatusService.hpp"

• Initialize a pointer to the object matching the desired service by calling the

GetService() method of “ServiceManager”.

• Pass on the name of the corresponding interface as the template argument.

You can place this call in the SubscribeServices() method of your component, for exam-

ple:

Header file (.hpp):

class ExampleComponent : public
{

...
private: //services

IDataAccessService::Ptr dataAccessService;
...

}

Source file (.cpp):

#include....
using namespace Arp::System::Rsc;
using namespace Arp ...

void ExampleComponent::SubscribeServices()
{

// Get service handle
this->deviceStatusService = ServiceManager::GetService<IDeviceStatusService>();

}

C Component that triggers the message

D Message type (log level)

E Message, e.g., info text, error message, debugging message

Please note that execution of RSC services can take some time (in particular Axioline and

PROFINET services). For this reason, avoid direct calls from ESM tasks.
108664_en_03 PHOENIX CONTACT 131 / 202

PLCNEXT TECHNOLOGY
RSC services are available for the following areas. You will find more detailed descriptions

in the sections specified.

– Axioline services: Read and write access to data and information of Axioline devices

(see Section 5.8.1 on page 132)

– PROFINET services: Read and write access to data and information of PROFINET de-

vices (see Section 5.8.2 on page 133)

– Device interface services: Access to information and properties of the operating sys-

tem and controller hardware (see Section 5.8.3 on page 135)

– GDS services: Read and write access to the GDS data (see Section 5.8.4 on

page 140)

5.8.1 RSC Axioline services

The Axioline component can be extended via interfaces for Axioline services. You can use

one interface for acyclic communication (PdiRead, PdiWrite). This interface is available

via the RSC protocol. Parameterization data, diagnostics information, and status informa-

tion (PDI = Parameters, Diagnostics and Information) of an Axioline device can be read or

written with the RSC service. Acyclic communication is suitable for the exchange of data

that does not recur cyclically.

5.8.1.1 “IAcyclicCommunicationService”

The “IAcyclicCommunicationService” RSC service in the “Arp/Io/Axioline/Services” name-

space for acyclic communication makes the following methods available:

– PdiRead:

Enables parameters, diagnostics and information of an Axioline device to be read

– PdiWrite

Enables parameters, diagnostics and information of an Axioline device to be written

PdiResult PdiRead(const PdiParam& pdiParam, std::vector<uint8>& data)
PdiResult PdiWrite(const PdiParam& pdiParam, const std::vector<uint8>& data)

Parameters are necessary for executing PdiRead and PdiWrite. The PdiParam structure

is used for transmitting the input parameters. The structure has the following elements:

Please note that execution of RSC services can take some time. For this reason, avoid

direct calls from ESM tasks.

The Axioline RSC services are only available to PLCnext Technology controllers that sup-

port an Axioline local bus.

Parameter Description

uint16 Slot Device number

uint8 Subslot Subdevice number

uint16 Index Object index

uint8 Subindex Object subindex
132 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
The return values are written to the PdiResult structure. The structure has the following el-

ements:

Data that is read (PdiRead) and data that is to be written (PdiWrite) is transferred in a type

unit8 vector (data). A description of the data (maximum size, type, etc.) of the object de-

scription is available in the data sheet of the respective Axioline module.

You need the following headers to use the service. Include them via the #include com-

mand:

– Arp/Io/Axioline/Services/IAcyclicCommunicationService.hpp

– Arp/Io/Axioline/Services/PdiParam.hpp

– Arp/Io/Axioline/Services/PdiResult.hpp

System-specific information on the Axioline F system is available in the PLCnext Engineer

online help system, as well as in the user manuals “Axioline F: System and installation” (UM

EN AXL F SYS INST) and “Axioline F: Diagnostic registers and error messages”

(UM EN AXL F SYS DIAG).

The user manuals can be downloaded at phoenixcontact.net/qr/2404267/manual. Further

information is also available in the data sheets of the respective Axioline modules.

5.8.2 RSC PROFINET services

The PROFINET component can be extended via interfaces for PROFINET services. You

can use one interface for acyclic communication (RecordRead, RecordWrite). The inter-

face is available via the RSC protocol. The parameter data, diagnostics information, and

status information (PDI = Parameters, Diagnostics and Information) of a PROFINET device

can be read or written with the RSC service. Acyclic communication is suitable for the ex-

change of data that does not recur cyclically.

5.8.2.1 “IAcyclicCommunicationService”

The “IAcyclicCommunicationService” RSC service in the “Arp/Io/ProfinetStack/Control-

ler/Service” namespace for acyclic communication makes the following methods available:

– RecordRead:

Enables parameters, diagnostics and information of a PROFINET device to be read

– RecordWrite

Enables parameters, diagnostics and information of a PROFINET device to be written

RecordResult RecordRead(const RecordParam& recordParam, std::vector<uint8>& data)
RecordResult RecordWrite(const RecordParam& recordParam, const std::vector<uint8>& data)

Parameters are necessary for executing RecordRead and RecordWrite. The “Record-

Param” structure is used for transmitting the input parameters. The structure provides two

ways of addressing a module:

– Version 1: Addressing via the ID

– Version 2: Addressing via an address that is made up of DeviceName, Slot, and Sub-

slot

Parameter Description

uint16 ErrorCode Error code

uint16 AddInfo Error code, further information

Please note that execution of RSC services can take some time. For this reason, avoid

direct calls from ESM tasks.
108664_en_03 PHOENIX CONTACT 133 / 202

http://www.phoenixcontact.net/qr/2404267/manual

PLCNEXT TECHNOLOGY
If one version is selected for addressing, the parameters of the other version must be 0 or

empty.

The “RecordParam” structure has the following elements:

The return values are written to the “RecordResult” structure. The structure has the param-

eters below. Further information on the parameters is available in the PROFINET specifica-

tion (version 2.3).

– boolean ServiceDone

– uint8 ErrorCode

– uint8 ErrorDecode

– uint8 ErrorCode1

– uint8 ErrorCode2

– unit16 AddData1

– unit16 AddData2

Parameter Description

uint16 Id Node ID of the submodule

The ID is assigned automatically. It can be viewed in PLCnext Engineer (version 1). For this, open

the submodule list of the PROFINET submodule node.

To determine the ID, you can also use the AddressToID method of the

IAddressConversionService.hpp service.

RscString<512>

DeviceName

Device name

Name of the device that is to be addressed (version 2)

uint16 Slot Device number (version 2)

uint8 Subslot Subdevice number (version 2)

uint16 Index Object index

uint8 Length Maximum data amount

Specifies the maximum amount of data to be written in bytes (“RecordRead”) or the amount of

data that is to be written to an object (“RecordWrite”).
134 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
Data that is read (“RecordRead”) or data that is to be written (“RecordWrite”) is transferred

in a type unit8 vector (“data”). A description of the data (maximum size, type, etc.) of the ob-

ject description can be found in the PROFINET specification (version 2.3).

You need the following headers to use the service. If necessary, include them via the

#include command:

– Arp/Io/ProfinetStack/Controller/Services/IAcyclicCommunicationService.hpp

– Arp/Io/ProfinetStack/Controller/Services/

AcyclicCommunicationServiceProxyFactory.hpp

– Arp/Io/ProfinetStack/Controller/Services/RecordParam.hpp

– Arp/Io/ProfinetStack/Controller/Services/RecordResult.hpp

5.8.3 RSC device interface services

The device interface services provide a range of functions for accessing properties of the

operating system and the controller hardware. You can call the information with the follow-

ing interfaces and defined parameters. The following headers are required to use the ser-

vice. Integrate these via #include, if necessary:

– Arp/Device/Interface/Services/IDeviceInfoService.hpp

– Arp/Device/Interface/Services/IDeviceStatusService.hpp

Table 5-3 ErrorCode1

Error code Description

0 No errors

0xF0 Internal error

The error can be evaluated more precisely via ErrorCode2.

Further error codes If a value other than 0xF0 or 0 is displayed in the ErrorCode1

element, the error is described in the ErrorCode, ErrorDe-

code, ErrorCode1, ErrorCode2, AddData1, and AddData2

fields by the PROFINET specification.

Table 5-4 ErrorCode2

Error code Description

0x03 “InvalidAddress”

ID or DeviceName/Slot/Subslot is invalid.

0x15 “RecordReadFailed”

RecordRead failed. This error can occur, for example, if sev-

eral devices simultaneously attempt to execute “RecordRead”

on one device.

0x16 „RecordWriteFailed”

RecordWrite failed. This error can occur, for example, if sev-

eral devices simultaneously attempt to execute “RecordWrite”

on one device.

0x17 “Timeout”

No confirmation was received.

Please note that execution of RSC services can take some time. For this reason, avoid

direct calls from ESM tasks.
108664_en_03 PHOENIX CONTACT 135 / 202

PLCNEXT TECHNOLOGY
5.8.3.1 “IDeviceInfoService”

The “IDeviceInfoService” RSC interface enables read access to device information. The

status value of a parameter is read with the GetItem() method. The status values of several

parameters are read with the GetItems() method.

RscVariant<512> GetItem(const RscString<512>& identifier)
void GetItems(GetItemsIdentifiersDelegate identifiersDelegate, GetItemsResultDelegate

resultDelegate)

The following parameters are available for calling information:

Table 5-5 “IDeviceInfoService” - parameters

Parameter Data type Description

General.DeviceClass UInt32 The “DeviceClass” parameter specifies the device class. Cur-

rently, only “ProgrammableLogicController” is supported.

0: Undefined

1: ProgrammableLogicController

2. BusCoupler

3: Switch

General.VendorName String The “VendorName” parameter indicates the name of the manufac-

turer.

General.ArticleName String The “ArticleName” parameter indicates the device name.

General.ArticleNumber String The “ArticleNumber” parameter indicates the order number of the

device.

General.SerialNumber String The “SerialNumber” parameter indicates the serial number of the

device.

General.Firmware.Version String The “FirmwareVersion” parameter indicates the firmware version

of the device. Here, 5-level notation (Major, Minor, Patch, Build,

Status) is used.

General.Firmware.VersionMajor Byte “FirmwareVersionMajor”

Info: The firmware version year is indicated without the first two

digits. E.g., “2019” is indicated as “19”.

General.Firmware.VersionMinor Byte “FirmwareVersionMinor”

General.Firmware.VersionPatch Byte “FirmwareVersionPatch”

General.Firmware.VersionBuild UInt32 “FirmwareVersionBuild”

General.Firmware.VersionStatus String “FirmwareVersionStatus”

General.Firmware.BuildDate String “FirmwareBuildDate”

ISO 8601 format <YYYY>-<MM>-<DD>

General.Firmware.BuildTime String “FirmwareBuildTime”

ISO 8601 format <hh>:<mm>:<ss>

General.Hardware.Version String The “HardwareVersion” parameter indicates the hardware version

of the device.

General.Fpga.Version String The “FPGAVersion” parameter indicates the FPGA version of the

device. Here, 3-level notation (Major, Minor, Patch) is used.

General.Fpga.VersionMajor Byte “FPGAVersionMajor”

General.Fpga.VersionMinor Byte “FPGAVersionMinor”

General.Fpga.VersionPatch Byte “FPGAVersionPatch”
136 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
5.8.3.2 “IDeviceStatusService”

This RSC interface enables read access to status information. The status value of a param-

eter is read using the GetItem() method. The status values of several parameters are read

using the GetItems() method. Use the

deviceStatusService.GetItem(“Parameters”) method to call status information.

RscVariant<512> GetItem(const RscString<512>& identifier)
void GetItems(GetItemsIdentifiersDelegate identifiersDelegate, GetItemsResultDelegate

resultDelegate)

The following parameters are available for calling information:

General.UniqueHardwareId String Sha256 Hash (32byte) hexadecimal coded as string

General.SPNS.Fpga.Version String FPGA version of the SPNS (only for devices with integrated safety

controller)

General.SPNS.Fpga.VersionMajor Byte SPNS FPGA version Major

General.SPNS.Fpga.VersionMinor Byte SPNS FPGA version Minor

General.SPNS.Fpga.BuildVersion Unsigned32 SPNS FPGA build version

General.SPNS.Firmware.Version String SPNS firmware version

General.SPNS.Firmware.

VersionMajor

Byte SPNS firmware version, Major

General.SPNS.Firmware.

VersionMinor

Byte SPNS firmware version, Minor

General.SPNS.Firmware.BuildVersion Unsigned32 SPNS firmware build version

Interfaces.Ethernet.Count Byte The “NoOfNetworInterfaces” parameter indicates the number of

network interfaces.

Interfaces.Ethernet.{adapterIndex}.

{port}.Mac

String The “Mac” parameter indicates the MAC address of the selected

network interface.

AA:BB:CC:DD:EE:FF

adapterIndex= 1, 2, ... port = 0 for the interface, MAC port = 1, 2,

... for the MAC port

Table 5-5 “IDeviceInfoService” - parameters

Parameter Data type Description

Parameter Data type Description

Status.DeviceHealth Byte The “DeviceHealth” parameter indicates the operating status of

the device.

0: OK

1: WARNING

2: ERROR

Status.Cpu.Load.Percent Byte The “CPULoad” parameter indicates the complete processor load

of the device as a percentage.

0% ... 100%

Status.Cpu{0}.Load.Percent Byte The “CPULoad{Core}” parameter indicates the processor load of

the selected processor core of the device as a percentage.

0% ... 100%

0x64 = 100%

Core = 0, 1, 2, etc.
108664_en_03 PHOENIX CONTACT 137 / 202

PLCNEXT TECHNOLOGY
You can also call status information on the LED states via the “IDeviceStatusService” inter-

face.

The colors of the LEDs are represented as follows, normally in the high word (HW) of the

return value:

public enum LedColor : ushort
{

Green = 1,

Status.Memory.Usage.Percent Byte The “MemoryUsage” parameter indicates the complete memory

usage of the device as a percentage.

0% ... 100%

0x64 = 100%

Status.ProgramMemoryIEC.

Usage.Percent

Byte The “ProgramMemoryUsage” parameter indicates the program

memory usage of the IEC runtime of the device as a percentage.

0% ... 100%

0x64 = 100%

Status.DataMemoryIEC.

Usage.Percent

Byte The “DataMemoryUsage” parameter indicates the data memory

usage of the IEC runtime of the device as a percentage.

0% ... 100%

0x64 = 100%

Status.RetainMemory.Usage.Percent Byte The “RetainMemoryUsage” parameter indicates the complete re-

tain memory usage of the device as a percentage.

0% ... 100%

0x64 = 100%

Status.RetainMemoryIEC.

Usage.Percent

Byte The “RetainMemoryUsage” parameter indicates the complete re-

tain memory usage of the device as a percentage.

0% ... 100%

0x64 = 100%

Status.Board.Temperature.Centigrade Int32 The “BoardTemperature” parameter indicates the temperature of

the interior of the device in °C.

Status.Board.Humidity Byte The “BoardHumidity” parameter indicates the relative humidity in

the device.

0% ... 100%

Status.Cpu.Temperature.Centigrade Int32 The “CPUTemperature” parameter indicates the temperature of

the processor in °C (only for RFC 4072S).

Status.KeySwitch.Position Byte The “KeySwitch” parameter indicates the position of the run/stop

switch (only for RFC 4072S controller).

0: Switch in stop position

1: Switch in run position

Status.RamDisk.{RamDiskIndex}.

Usage.Percent

Byte The parameter indicates the memory usage of the RAM disc(s) as

a percentage (only for RFC 4072S controller).

0% ... 100%

RamDiskIndex = 1, 2,.... Number of the RAM disc (currently, only

one RAM disc is supported, so that the index is always 1)

Status.RamDisk.{RamDiskIndex}.

Usage

UInt32 The parameter indicates the absolute memory usage of the RAM

disc(s) (only for RFC 4072S controller).

RamDiskIndex = 1, 2,....Number of the RAM disc (currently, only

one RAM disc is supported, so that the index is always 1)

Parameter Data type Description
138 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
Yellow = 2,
Red = 4

};

The states of the LEDs is represented as follows, normally in the low word (LW) of the return

value:

public enum LedStates : ushort
{

Off = 0,
On = 1,
Flashing_0_5_Hz = 2,
Flashing_2_Hz = 3,
Alternating_0_5_Hz = 4,
Alternating_2_Hz = 5

}

Table 5-6 LEDs of the IEC runtime system

Parameter Data type Description

Status.Leds.Runtime.Run UInt32 Runtime RUN LED (HW = color, LW = status)

Status.Leds.Runtime.Fail UInt32 Runtime FAIL LED (HW = color, LW = status)

Status.Leds.Runtime.Debug UInt32 Runtime DEBUG LED (HW = color, LW = status)

Table 5-7 Axioline LEDs

Parameter Data type Description

Status.Leds.Axio.D UInt32 AXIO master D LED (HW = color, LW = status)

Status.Leds.Axio.E UInt32 AXIO master E LED (HW = color, LW = status)

Table 5-8 PROFINET LEDs

Parameter Data type Description

Status.Leds.Pnio.Bf_C UInt32 Pnio controller BF LED (HW = color, LW = status)

Status.Leds.Pnio.Bf_D UInt32 Pnio device BF LED (HW = color, LW = status)

Status.Leds.Pnio.Sf UInt32 Pnio controller SF LED (HW = color, LW = status)
108664_en_03 PHOENIX CONTACT 139 / 202

PLCNEXT TECHNOLOGY
You can also call status information on the network states via the “IDeviceStatusService” in-

terface:

5.8.4 RSC GDS services

5.8.4.1 “IDataAccessService”

During runtime, the internal user components have read and write access to the GDS data.

The service enables asynchronous reading and writing of one or more ports or even internal

variables. For this process, you need the name of the port(s) that is/are to be read. The data

read can be written to a database, for example.

You need the following header to use the “IDataAccessService” service. If necessary, in-

clude it via the #include command:

– Arp/Plc/Gds/Services/IDataAccessService.hpp

Service functions for direct data access:

– Read(): This function is used to read the values of the variable addresses passed on.

– ReadSingle(): This function is used to read the value of the variable address passed

on. Only simple variables are supported (no arrays or structures).

– Write(): This function is used to write the values passed on to the variables of the vari-

able address passed on.

– WriteSingle(): This function is used to write the value passed on to the variables of

the variable address passed on. Only simple variables are supported (no arrays or

structures).

ReadItem ReadSingle(const RscString<512>& portName)

Table 5-9 Network interface

Parameter Data type Description

Status.Interfaces.Ethernet.

{adapterIndex}.{port}Baudrate

Byte The “Interface Baudrate” parameter indicates the current speed of

the interface.

1: 10 Mbps

2: 100 Mbps

3: 1000 Mbps

adapterIndex = 1, 2, ...

port = 1, 2, ...

Status.Interfaces.Ethernet.

{adapterIndex}.{port}.Duplex

Byte The “Interface Duplex Mode” parameter indicates the current du-

plex mode of the interface.

1: Half duplex

2: Full duplex

adapterIndex = 1, 2, ...

port = 1, 2, ...

Status.Interfaces.Ethernet.

{adapterIndex}.{port}.Link

Byte The “Interface Link Status” parameter indicates the link status of

the interface.

0: linkDown

1: linkUp

adapterIndex = 1, 2, ...

port = 1, 2, ...

Please note that execution of RSC services can take some time. For this reason, avoid

direct calls from ESM tasks.
140 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
Read(ReadPortNamesDelegate portNamesDelegate, ReadResultDelegate resultDelegate)
DataAccessError WriteSingle(const WriteItem& data)

Write(WriteDataDelegate dataDelegate, WriteResultDelegate resultDelegate)

Each port has a unique name within the GDS that is made up as described in Section “GDS

configuration using configuration files” on page 34. You need the complete name (URI) of a

port in order to address it. The following port addresses are valid, for example:

– ComponentName-1/ProgramName-1.Variable_Name

– ComponentName-1/Global_Variable_Name

– ComponentName-1/ProgramName-1.Array_Variable_Name

– ComponentName-1/ProgramName-1.Array_Variable_Name[index]

– ComponentName-1/ProgramName-1.Array_Variable_Name[startIndex:endIndex]

– ComponentName-1/ProgramName-1.Struct_Variable_Name.Element1.Leaf

– ComponentName-1/ProgramName-1.Struct_Variable_Name.Element1.LeafArray

– ComponentName-1/ProgramName-1.Struct_Variable_Name.Element1.

LeafArray[index]

The following variable types can be read and written:

– Primitive

– DateTime

– StaticString

– IecString

– Enum

– Struct

– Pointer

– Array

5.8.4.2 “ISubscriptionService”

The “ISubscriptionService” offers an alternative to the read functions of

“IDataAccessService”. The variables of which the values are to be read are only registered

once and can then be read continuously. The data can be read more rapidly, and, due to the

elimination of variable addressing, also recorded consistently with the task cycle. All vari-

ables in the same ESM task are recorded in the same cycle (with the exception of the

“DirectRead” subscription type). In addition, “ISubscriptionService” provides time stamps

that can be used to assign a clear recording time to each value.

To use the “ISubscriptionService” class, you require the following header file which was de-

clared in the “Arp::Plc::Gds::Services” namespace:

#include „Arp/Plc/Gds/Services/ISubscriptionService.hpp“
• If necessary, include it via the #include command.

Below you will find a description of how to create, start, and read a subscription.

Creating a subscription First, you have to create a subscription.

• To create a subscription, use the following function of the “ISubscriptionService”:

uint32 CreateSubscription(SubscriptionKind kind)
108664_en_03 PHOENIX CONTACT 141 / 202

PLCNEXT TECHNOLOGY
With this function, the type of the desired subscription is passed on. Select one of the fol-

lowing four types:

Adding variables • Add the desired variables to the subscription by calling one of the following functions:

DataAccessError AddVariable(uint32 subscriptionId, const RscString<512>& variableName)

or

void AddVariables(uint32 subscriptionId, AddVariablesVariableNamesDelegate variableNamesDelegate,
AddVariablesResultDelegate resultDelegate);

Table 5-10 Subscription types

Type Description

“DirectRead” The “DirectRead” subscription records the values directly when the ReadValues() function is

called within the context of the thread to be called. The “HighPerformance”, “RealTime”, and

“Recording” subscription types collect the values within the context of the assigned ESM task.

The data is read directly from the respective variable. A copy process is only implemented if

data is also queried. The read data can originate from different task cycles.

This subscription can deliver the best performance with the lowest impact on real time.

Possible use: Asynchronous data acquisition of non-time-critical data.

“HighPerformance” The “HighPerformance” subscription uses a double buffer which contains the last written data

of a variable. The buffer enables almost simultaneous writing and reading of data.

The “HighPerformance” type is consistent with the task cycle. It uses the least memory and

shows the least impact on real time (compared with the “RealTime” and “Recording

Subscription” types).

Possible use: Standard type for acquiring data.

“RealTime” The “RealTime” subscription uses a quad buffer which contains the last written data of a vari-

able. The buffer minimizes access times during reading and writing.

The “RealTime” type is consistent with the task cycle. It guarantees fast data access but re-

quires four times the amount of memory.

Possible use: The subscription is suitable for variables running in very fast tasks and if fast ac-

cess to read files is required.

“Recording” The “Recording” subscription uses a ring buffer that can store several data items of a variable.

This type is consistent with the task cycle and has a low impact on real time. However, depend-

ing on the ring size, it requires a lot of memory. By default, the ring size is set to 10. It can be

configured if the CreateRecordingSubscription() function is used instead of

CreateSubscription().

Possible use: The subscription is suitable for variables running in tasks that are faster than the

task of the user but the user still needs all values.
142 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
Both functions can be called repeatedly for the same subscription. As with

“IDataAccessService”, the variables are addressed via their complete name. Some exam-

ples are shown in the following table:

Once a variable was added successfully to the subscription, the

DataAccessError::None value is returned. In case of an error, the following return values

might be returned:

The following types are currently supported:

– Primitive

– DateTime

– String (currently, only StaticString and IecString are supported)

– StaticString

– IecString

– Enum

– Struct

– Pointer

– Array

Table 5-11 Examples of variable addressing

Variable addressing Description

ComponentName-1/ProgramName-1.Variable_Name Program variable

ComponentName-1/Global_Variable_Name Component variable (global variable)

ComponentName-1/ProgramName-1:Array_Variable_Name[index] Array element

ComponentName-1/ProgramName-

1:Struct_Variable_Name.Element1.Leaf

Structure element (leaf)

ComponentName-1/ProgramName-

1:Struct_Variable_Name.Element1.LeafArray[index]

Array element from a structure

ComponentName-1/ProgramName-

1:Array_Variable_Name[startIndex:endIndex]

An extract of array elements

Table 5-12 Return values in the event of an error

Name Description

None No error

NotExists The variable does not exist in the system.

NotAuthorized The user does not have sufficient authorization.

TypeMismatch During writing, the value type is not suitable for the respective

port.

PortNameSyntaxError The port address is syntactically incorrect.

PortNameSemanticError The port address is semantically incorrect.

IndexOutOfRange The address contains an array index that is outside the array.

NotImplemented The variable or service function has not yet been imple-

mented.

NotSupported The variable is not supported.

CurrentlyUnavailable The service is currently unavailable.

UnvalidSubscription The specified subscription was not found or is invalid.
108664_en_03 PHOENIX CONTACT 143 / 202

PLCNEXT TECHNOLOGY
Subscribe/unsubscribe Once you created a subscription and configured it with variables, you can activate it with

Subscribe.

• To activate the subscription, call the following service function:

DataAccessError Subscribe(uint32 subscriptionId, uint64 sampleRate);

With call of the function, copying of the variable starts (exception: for the “DirectRead” type,

no data is automatically recorded).

Use the sampleRate parameter to indicate in which time grid the values are to be recorded.

The sampleRate can only be a multiple of the interval time of a cyclic ESM task. If a

sampleRate that does not correspond to this interval time is passed on, the

“SubscriptionValue” rounds the value to the next faster value.

Example: Variables from task A and task B are to be recorded:

– Interval time for task A: 10 ms

– Interval time for task B: 8 ms

If you specify 50 ms for sampleRate, the following is actually recorded:

– Variables from task A at 50 ms (every fifth cycle)

– Variables from task B at 48 ms (every sixth cycle)

If you specify value 0 for sampleRate, all the data is recorded in the interval of the respective

task.

– Variables from task A at 10 ms

– Variables from task B at 8 ms

When a subscription was started, you can pause it via Unsubscribe.

• For this, call the following service function:

DataAccessError Unsubscribe(uint subscriptionId);

If a subscription pauses, no new data is recorded. Existing data is available in the subscrip-

tion.

• To restart recording, call Subscribe again.

GetVariableInfos This service function shows which variables are currently recorded. Therefore, the function

only returns information once Subscribe is called.

The function only returns information about variable sorting. This information is decisive for

reading the data. Each subscription internally sorts the variables, e.g., by assignment to the

ESM task. The data of added variables is therefore not read in the order in which is was

added. The “Read” functions only provide the raw values of the variables but do not give in-

formation on which variable the value is assigned to. At this point, service function informa-

tion is the only option to assign the values to the respective variables. Variable information

is returned in the same order as data for the “Read” functions. Therefore, variable informa-

tion has to be read before the “Read” functions of a subscription are called for the first time.

A matching “Info” function is available for each “Read” function.

• To query all currently recorded variables, call the following function:

DataAccessError GetVariableInfos(uint32 subscriptionId, GetVariableInfosVariableInfoDelegate
variableInfoDelegate);

• To query the data, call the associated “Read” function:

DataAccessError ReadValues(uint32 subscriptionId, ReadTimeStampedValuesValuesDelegate
valuesDelegate)
144 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
• If, in addition to the variable values, you also require the time stamps of value acquisi-

tion, call the following function:

DataAccessError GetTimeStampedVariableInfos(uint32 subscriptionId,
GetTimeStampedVariableInfosVariableInfoDelegate variableInfoDelegate)

Information on time stamps is returned in addition to information on the variables. A variable

with the name “timestamp” and of the “Arp.Plc.DataType.Int64” data type is always returned

as the first element of an ESM task. This is followed by all information of the variable that is

associated with the ESM task and can be assigned to the time stamp. If there are variables

of several ESM tasks in the subscription, an additional time stamp is returned for each task,

which is followed by the associated information. Here, information is also returned in the

same order as the data that is returned with the following “Read” function:

DataAccessError GetRecordInfos(uint32 subscriptionId, GetRecordInfosRecordInfosDelegate
recordInfosDelegate);

ReadValues Once you have started the recording of a subscription, you can query the acquired data. Dif-

ferent “Read” functions are available for this. The “Read” functions only return the variable

values. The values are not assigned to the respective variable. For assigning the values to

the respective variables, you have to call the corresponding “Info” function once (see Sec-

tion “GetVariableInfos” on page 144).

The following “Read” service functions are available:

DataAccessError ReadValues(uint32 subscriptionId, ReadTimeStampedValuesValuesDelegate
valuesDelegate)

This function returns all the values in a static order. The GetVariableInfos() function is

used for assigning the variables.

Example:

– Added variables from task A: a1, a2

– Added variables from task B: b1

ReadValues:

Object[]

a2

a1

b1

The following function returns all the values in a static order, including the associated time

stamps:

DataAccessError ReadTimeStampedValues(uint32 subscriptionId, ReadTimeStampedValuesValuesDelegate
valuesDelegate);

The time stamps are always located before the associated variable values. The number of

time stamps always corresponds to the number of ESM tasks the variables originate from.

By means of the “DateTime” class, which is defined in the Arp namespace and in the

Arp/System/Core/DateTime.hpp header file, the value of the “timestamp” variable can be

converted into a time stamp. The GetVariableInfos() function is used for assigning the

variables.

Example:

– Added variables from task A: a1, a2

– Added variables from task B: b1
108664_en_03 PHOENIX CONTACT 145 / 202

PLCNEXT TECHNOLOGY
ReadValues:

Object[]

Timestamp task A

a2

a1

Timestamp task B

b1

The following function returns all the values packed in records:

DataAccessError ReadRecords(uint32 subscriptionId, uint16 count, ReadRecordsRecordsDelegate
recordsDelegate);

A record, also called data record, only contains the variable data from an ESM task and the

associated time stamp. The time stamp is always located before the associated variable

values. The variable order is always static and does not change during operation. An ESM

task record is created for each ESM task. It contains all the corresponding data records of

the respective ESM task. Depending on the subscription configuration, an ESM task record

can contain several data records.

E.g.: A subscription of the “Recording” type with a task interval of 100 ms and a capacity of

10 returns 10 data records after one second. The time stamps are 100 ms apart. However,

a subscription of the “HighPerformance”, “RealTime”, or “DirectRead” type always returns

one data record only. By means of the “Read” function, you can read all the subscription

data of the “Recording” type at once.

In addition to the static order of variables in the data records, the order of the ESM task re-

cords is static, too. By means of the GetTimeStampedVariableInfos() function, each

value can be assigned a variable. The variable information describes exactly the first ESM

task record and all the data records contained therein, from the first time stamp to the final

variable information associated with this time stamp.

By means of the “DateTime” class, which is defined in the Arp namespace and in the

Arp/System/Core/DateTime.hpp header file, the value of the “timestamp” variable in the re-

spective data records can be converted into a time stamp.

Example:

– Added variables from task A: a1, a2

– Added variables from task B: b1

– Task A recorded 2 records.

– Task B recorded 1 record.

ReadRecords:

Object[] (ESM task records)

Objects[] (ESM task record A)

Objects[](data record cycle 1)

Timestamp

a2

a1

Objects[](data record cycle 2)
146 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
Timestamp

a2

a1

Objects[] (ESM task record B)

Objects[](data record cycle 1)

Timestamp

b1

Changing a subcription You can modify two things of an existing subscription:

– The sampling interval the subscription used to record data.

– The variables that are to be recorded.

The subscription type can only be changed if you delete the subscription and create it again.

To change the sample rate, proceed as follows:

• Stop the subscription by calling Unsubscribe.

• Execute the subscription by calling Subscribe and entering the new sample rate as the

parameter.

Several functions are available for changing the variables to be recorded:

• To delete a variable from a subscription, call the following function:

DataAccessError RemoveVariable(uint32 subscriptionId, const RscString<512>& variableName),

• To add a variable to a subscription, call the following function:

DataAccessError AddVariable(uint32 subscriptionId, const RscString<512>& variableName)

• To add several variables to a subscription, call the following function:

void AddVariables(uint32 subscriptionId, AddVariablesVariableNamesDelegate
variableNamesDelegate, AddVariablesResultDelegate resultDelegate);

The changes can be made during operation and also to a subscription that is currently re-

cording. To apply the changes, execute Resubscribe.

• To execute Resubscribe, call the following service function:

DataAccessError Resubscribe(uint32 subscriptionId, uint64 sampleRate);

Once Resubscribe was called, the changes are applied to the subscription. As the internal

memories are rebuilt, data can be lost.

Deleting a subscription If a subscription is no longer required, you have to delete it. If you do not delete the subscrip-

tion, is will be retained until the next restart of the PLC application (warm or cold restart).

To delete a subscription, call the following function:

DataAccessError DeleteSubscription(uint32 subscriptionId)

The internally reserved memory is enabled and the subscription ID becomes invalid.

5.9 Notifications

The notification manager is used for registering, sending and receiving notifications be-

tween components of a controller. The header files required for using the notification man-

ager are provided via the PLCnext Technology SDK (see Section 6.1, “PLCnCLI (PLCnext
108664_en_03 PHOENIX CONTACT 147 / 202

PLCNEXT TECHNOLOGY
Command Line Interface)”). The SDK contains classes for the Notification manager,

classes as a basis for user-defined user data (payload), as well as the payload classes of

the PLCnext Technology firmware. If you want to use a class, integrate it into your program

via an #include command, (e.g., #include
<Arp/System/Nm/NotificationManager.hpp>). Further information on the classes and

their applications is available directly in the code commentary.

Defining user data To enable correct interpretation of the user data of a notification, the structure has to be de-

fined. Use template class

“Arp/System/Nm/SpecializedPayload.hpp” for this. User data with up to 50 fields can be

used as a character string.

Example code with two fields:

// Example payload with two payload fields

#include "Arp/System/Nm/SpecializedPayload.hpp"

// Use the class name as template parameter for SpecializedPayload
class UserLoggedInPayload
 : public Arp::System::Nm::SpecializedPayload<UserLoggedInPayload>
{
public:

// Inherit base class constructors
using SpecializedPayload::SpecializedPayload;

// Define a convenient constructor to create the payload
// This constructor will be called by a variadic template and perfect forwarding when
// a notification is sent. Therefore this constructor defines the signature of the
// function to send a notification.
// Pass a format string for a user visible representation of the payload to the base
// class' constructor. This format string will be used by the NotificationLogger to
// serialize the payload.
UserLoggedInPayload(const String& username, const String& permissions)
: SpecializedPayload("User logged in: {0} (permissions={1})")

 {
// Store the values of the parameters in the underlying payload data structure
this->SetFieldvalue(this->fieldIndexUsername, username);
this->SetFieldvalue(this->fieldIndexPermissions, permissions);

 }
// Add getters for a type-safe access to the payload fields
String GetUsername() const
{

return this->GetFieldValueAs<String>(this->fieldIndexUsername);
}

String GetPermissions() const
{
return this->GetFieldValueAs<String>(this->fieldIndexPermissions);
}

private:
// Define the fields of the payload type. Each field is accessed by an index.
// The type infomation is used to ensure only valid information is set to the
// payload fields.
// Use direct member intialization here to ensure these members are also intialized
// when the inherited constructors are used.
// The order of these declarations matters, so don't change them.
148 / 202 PHOENIX CONTACT 108664_en_03

Structure of a C++ program
const size_t fieldIndexUsername = this->AddField<String>();
const size_t fieldIndexPermissions = this->AddField<String>();

};

Registering and sending

notifications

Before a notification can be sent, it must be registered with the Notification manager. If a

component that registered a notification is no longer available, it has to unregister the noti-

fication first. Both processes are implemented using the “NotificationRegistration Proxy Ob-

ject”.

Example:

// in UserManager
NotificationManager& nm= NotificationManager::GetInstance();
auto UserLoggedInRegistration = nm.CreateNotificationRegistration<UserLoggedInPayload>(

"Arp.System.Um.Login", "UserManager", Severity::Info);

UserLoggedInRegistration.SendNotification("hans", "admin");

// notification is deregistered automatically in destructor of UserLoggedInRegistration

Metadata of a notification To register a notification, the sender must specify metadata information:

– notificationName:

The notification name defines under which name the notification is published. The parts

of a name are separated by ”.” and should correspond, up to the component level, to

the name of the component to be sent, e.g., “Arp.System.Um.UserLogin”,

“Arp.Plc.Domain.PlcStateChanged”.

– senderName:

The name of the component sending the notification.

– Severity:

Information on the severity of the notification. Processing is not affected by the severity.

– Info: General information

– Warning: Warning for the user

– Error: Error without serious impact

– Critical: Error with medium impact

– Fatal: Error with serious impact

– PayloadTypeId:

Unique identification for the user data type.

⇒ The NotificationNameId is returned:

The ID is used to for identify an instance of a notification. It is required for sending and

unregistering a notification.

The status of a notification registration can have the following states:

– Subscribed: A recipient subscribed but has not yet been registered by a component.

Subscribing to a notification that has not yet been registered or has again been unreg-

istered is only possible during startup of the firmware and startup of the controller. Oth-

erwise, an exception will be triggered.

– Registered: Registered by a component

– Unregistered: Unregistered by a component

The GetNotificationRegistration() method returns the above meta information about

a notification.
108664_en_03 PHOENIX CONTACT 149 / 202

PLCNEXT TECHNOLOGY
Receiving notifications To receive notifications, the recipient must subscribe to the notification name with the

Notification manager. The NotificatiaonSubscriber object is used for receiving notifications.

If a recipient is no longer to receive notifications, it has to unsubscribe from theses notifica-

tions. To make sure that this is done at the end of the recipient's life cycle, it is recommended

to use a proxy object like the one described for registering of notifications.

Example:

// in eHMI
void HandleUserLogins(const Notification& notification)
{

auto payload = notification.GetPayloadAs<UserLoggedInPayload>();
// do something with payload.GetUsername() and payload.GetPermissions()

}

// in some long living object of eHMI
NotificationManager& nm = NotificationManager::GetInstance();
auto UserLoggedIn = nm.CreateNotificationSubscriber("Arp.System.Um.Login");
UserLoggedIn.OnNotification += make_delegate(HandleUserLogins);

// notification is unsubscribed automatically in destructor of UserLoggedIn

Querying information The INotificationManagerInfo interface is the interface for querying information about the

NotificationManager. The following options are available:

– GetNotificationName(): This method returns the notification name.

– GetNotificationNameId(): This method returns the ID of a notification name.

– GetNotificationRegistration(): This method returns the information about a noti-

fication made available during registration (see Section “Metadata of a notification” on

page 149.)

– GetAllKnownNotificationNameIds(): This method returns a list of

NotificationNameIds of all known notifications, independent of their status.

– GetNotificationsNameIdsByStatus(): This method returns a list of

NotificationNameIds of notifications with a specific status.
150 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
6 Creating programs with C++

With PLCnext Technology, you can also use programs created with C++ in the real-time

context of a PLC along with conventional IEC 61131-3 programs. To use programs and pro-

gram parts created in C++ within the scope of PLCnext Technology, you need a Software

Development Kit (SDK).

With the PLCnCLI (PLCnext Command Line Interface), Phoenix Contact provides you with

a tool featuring the following:

– Administration of the SDKs

– Build environment

– Automatic generation of required metadata and configurations

– Automatic creation of the completed library

– Extensive toolchain based on a console

The PLCnCLI is based on the .NET Core Framework and can be used on Windows and

Linux operating systems.

You can use the freely available Eclipse
®

 software with the Phoenix Contact add-in for

Eclipse
®

 as the C++ development environment. The add-in allows for easy connection to

the PLCnext Technology platform and provides the PLCnCLI functions in Eclipse
®

.

6.1 PLCnCLI (PLCnext Command Line Interface)

The PLCnCLI (in the following also “CLI”) provides the entire toolchain for C++ program-

ming on the PLCnext Technology platform as well as a template system for creating proj-

ects. Based on the templates, you can develop your applications. Use the CLI to unpack

and manage the SDKs. CMake is contained as the build environment and each SDK has its

own configuration. A parser integrated in PLCnCLI creates the metadata required for

PLCnext Technology. The LibraryBuilder contained in PLCnCLI creates a

PLCnext Engineer library from the project.

6.1.1 System requirements

• Before starting the installation, ensure that the system requirements are met.

• Download the necessary software.

Operating system

The PLCnCLI was tested and released for the following operating systems:

– Microsoft
®

 Windows
®

 10

– Linux (Ubuntu 18.04.1.LTS)

The use of the Eclipse
®

add-in requires the installation of PLCnCLI (Section “Installing

PLCnCLI” on page 152) as well as the installation of one or several SDKs (Section “Install-

ing SDKs” on page 152). For information on using the Eclipse
®

 add-in, please refer to

Section “Eclipse® add-in” on page 156.
108664_en_03 PHOENIX CONTACT 151 / 202

PLCNEXT TECHNOLOGY
Phoenix Contact software

– PLCnCLI (PLCnext Command Line Interface):

The CLI is a command line interface. It can be used, e.g., for generating metadata, C++

header files, PLCnext Engineer libraries, and for adding IN and OUT ports. The func-

tions can be called using simple commands. An integrated help lists the commands and

describes their functions.

– PLCnext Technology SDK:

An SDK contains all of the important toolchains and libraries required for creating a pro-

gram. The SDK is installed via the CLI (see Section 6.1.3).

PLCnCLI and PLCnext Technology SDK are available in the download area of your control-

ler at phoenixcontact.net/products.

Some sample applications programmed in C++ can be found at https://github.com/plcnext.

6.1.2 Installing PLCnCLI

Installing in Windows • Run the installation file.

• Follow the instructions of the installation wizard.

Phoenix Contact recommends to add the installation directory to the “Path” variable in the

environment variables.

Installing in Linux The following packages are required for installation in Linux:

– “xz-utils”

Required for SDK installation.

– “python3”

Required for SDK installation.

– “build-essential”

The package contains the major part of the toolchain required for C++ program-

ming, e.g., “make”.

– “libunwind8”

The “EngineeringLibraryBuilder” requires this library.

– “sshpass_1.06-1_amd64.deb”

Is used by the debug script.

To check if the packages were installed or are being installed, enter the following command:

sudo apt-get install xz-utils python3 build-essential libunwind8
• Then, run the “PLCnCLI_Setup.sh” file.

• Read and accept the “Software License Terms”.

You will then receive a folder named “plcncli” to which the PLCnCLI was unpacked. Like for

Windows, Phoenix Contact recommends to introduce the “Executable” file to simplify call-

ing the file in the console.

• For this, enter the following command:

ln -s [Path to the PLCnCLI installation folder]/plcncli /usr/
local/bin/plcncli

E.g.: ln -s /home/plcncli/plcncli /usr/local/bin/plcncli

6.1.3 Installing SDKs

• Download the SDK that is suitable for your controller from the download area of your

controller at phoenixcontact.net/products.
152 / 202 PHOENIX CONTACT 108664_en_03

http://www.phoenixcontact.net/products
https://github.com/plcnext
http://www.phoenixcontact.net/products

Creating programs with C++
• Unpack the .zip file.

• Call the CLI in the console using the following command:

plcncli.exe install sdk –d [Installation path] –p [Path to archive
file]
E.g.: plcncli.exe install sdk -d C:\CLI\SDKs\AXCF2152\2019_0\ -p
C:\CLI\pxc-glibc-x86_64-axcf2152-image-mingw-cortexa9t2hf-neon-
toolchain-2019.0.tar.xz

If you install several SDKs, Phoenix Contact recommends to use the “target name/firmware

version” folder structure. Installing an SDK using the PLCnCLI automatically makes the in-

stallation known to the CLI.

Introducing an SDK • To introduce already unpacked SDKs to the CLI, enter the following command:

plcncli.exe set setting –a SdkPaths [Path to SDK]
E.g.: plcncli.exe set setting –a SdkPaths C:\CLI\SDKs\AXCF2152\2019_0\

• To receive a list of all available settings and the set values, enter the following com-

mand:

plcncli.exe get setting –a

Uninstalling an SDK – To uninstall an SDK, enter the following command:

plcncli.exe set setting –r [Path to SDK]

The uninstalled SDK is removed from the PLCnCLI, but will be retained in the directory sys-

tem.

6.1.4 Functions of the PLCnCLI

CLI features You can execute many functions directly using the Command Line Interface (CLI). The CLI

provides the following features, which you can call by means of simple commands:

– Creating projects

– Managing SDKs

– Generating metafiles (*.progmeta, *.compmeta, *.libmeta)

– Generating C++ frames and header files

– Compiling with CMake

– Creating PLCnext Engineer libraries for several controllers and firmware versions

CLI command structure Use the Command Line Interface to call functions by means of simple commands.

• Activate the CLI by calling the plcncli.exe via the shell, e.g., C:\CLI\plcncli.exe.
108664_en_03 PHOENIX CONTACT 153 / 202

PLCNEXT TECHNOLOGY
There is a long and a short form for the commands, which you can use as you like:

Long form:

• To add the parameters, prefix “--”.

E.g.: new project --name MyProject1

Short form:

• To add the parameters, prefix “-”.

E.g.: new project -n MyProject1

The functions are structured hierarchically. For each command, there is another level of

commands that specifies the desired function in more detail. Use the --help command to

call a description of the individual functions.

E.g.: new project --help

Figure 6-1 Description of functions
154 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
If you do not specify all the parameters, the system will use default parameters. The values

will be displayed after the command was executed.

If you do not specify a directory path via the --path option, e.g., when creating a project, a

subfolder is created and used in the current directory.

CLI command overview The CLI provides the following commands, which you can use to execute the corresponding

functions. To call a command, enter it in the command line after the plcncli.exe call.

E.g., C:\CLI\plcncli.exe new...:

Each command can be specified using additional parameters. Commands consist of the fol-

lowing:

If you require information on parameters or additional command levels, you can request

them for each level by means of the --help command.

Example:

Configuring a project

The following example shows an option of how to configure a project up to the complete

PLCnext library using the CLI:

• Open a project folder of your choice:

e.g., C:\Users\<username>\Documents\CLI Projects.

• Generate a new project with the project name “Project1”:

\CLI\Plcncli.exe new project –n Project1
• Go to the “Project1” project folder:

cd Project1
• Select the desired controller for the project (e.g., AXC F 2152):

plcncli.exe set targets --add -n AXCF2152
• Use the following command to generate the necessary metafiles for the project:

\CLI\plcncli.exe generate config
• Use the following command to generate the necessary code files for the project:

\CLI\plcncli.exe generate code
• You can also generate metafiles and code files in only one step:

\CLI\plcncli.exe generate all
• Compile the project.:

\CLI\plcncli.exe build

Table 6-1 CLI command overview

Command Meaning

build Compile a project

generate Generate libraries, metafiles and code files

get Query information about projects, controllers, etc.

set Make settings, e.g., select a controller

update Update of controllers in the current project

install Install SDK

new Create new files/projects

help Call additional information about a specific command

version Show version information

CLI call Level 1 Level 2 Level 3

C:\...plcncli.exe new project -n or --name
108664_en_03 PHOENIX CONTACT 155 / 202

PLCNEXT TECHNOLOGY
• Generate a library:

\CLI\plcncli.exe generate library

⇒ The library and the .so files are located in the “bin” folder of the project.

For additional information on programming the code, please refer to Section 5, “Structure of

a C++ program”.

Importing the library You can then import the generated library in PLCnext Engineer, see Section 9, “Importing

libraries into PLCnext Engineer”.

6.2 Eclipse
®

 add-in

The Eclipse
®

 add-in for PLCnext C++ programming enables you to use the PLCnCLI func-

tions from you familiar C++ development environment.

6.2.1 Requirements

Installing Eclipse
®

Phoenix Contact recommends the Eclipse
®

 CDT Photon (9.5.2) development environment.

• Download the Eclipse
®

 CDT Photon (9.5.2) software with the “Eclipse IDE for C/C++

Developers” package from https://www.eclipse.org.

• Copy and unpack the files to any folder.

• You can execute Eclipse
®

 right away.

Installing PLCnCLI • Install the PLCnext Command Line Interface according to the information in

Section 6.1.2, “Installing PLCnCLI”.

Installing SDKs • Install the SDKs according to the information in Section 6.1.3, “Installing SDKs”.

6.2.2 Installing/updating/uninstalling the Eclipse
®

 add-in

Installing the add-in • If necessary, uninstall earlier add-in versions (see “Uninstalling the add-in” on

page 158).

• Start Eclipse
®

.

The Java™ Runtime Environment is required for the Eclipse
®

 development environment.

If an error with “error code 13” occurs when Java is started, check if the correct Java ver-

sion is installed. If you use a 64-bit Eclipse version, you have to use a 64-bit Java version.
156 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
• Open the “Help, Install New Software...” menu.

Figure 6-2 “Help, Install New Software...” menu

• To select the path to the directory of the add-in, click on “Add” in the “Install” dialog (see

Figure 6-3).

• In the “Add Repository” dialog, click on “Archive” and select the archive of the add-in.

You will find it in the installation folder of the PLCnCLI under

.../ide-plugins/com.phoenixcontact.plcnext.updatesite.zip.

• Enter a name of your choice in the “Name” input field and confirm with “Add”.
108664_en_03 PHOENIX CONTACT 157 / 202

PLCNEXT TECHNOLOGY
• Disable the “Contact all update sites during install to find required software” check box.

Figure 6-3 “Install” dialog

• Click on the “Next” button.

• Read and accept the licence agreements.

• Click “Finish” to complete the installation.

• Restart Eclipse
®

.

Updating the add-in • To update the Eclipse
®

 add-in, proceed as described in Section “Installing the add-in”

on page 156.

Uninstalling the add-in • Open the “Help, About Eclipse IDE” menu.
158 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
• Click on the “Installation Details” button.

Figure 6-4 “Help, About Eclipse IDE” menu

• Select the earlier add-in versions and uninstall them.

6.2.3 Creating a new C++ project in Eclipse
®

This section describes how to create a new C++ project in Eclipse
®

.

• Open the “File, New, Project...” menu.

Figure 6-5 Creating a new project

The “New Project” window opens (see Figure 6-6).

• Select the “PLCnext C++ Project” wizard from the selection list.
108664_en_03 PHOENIX CONTACT 159 / 202

PLCNEXT TECHNOLOGY
• Confirm your selection with “Next”.

Figure 6-6 Selecting a wizard

• Enter a project name in the “Project name” input field.

• In the “Toolchains” area, select the “PLCnext C++ Toolchain” entry.
160 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
• Confirm with “Next”.

Figure 6-7 Selecting toolchains

• Enter a name for the program and component in the corresponding input fields.

Figure 6-8 Entering a name for the program and component
108664_en_03 PHOENIX CONTACT 161 / 202

PLCNEXT TECHNOLOGY
• Select the desired controller and firmware status for the project.

Figure 6-9 Selecting the controller and firmware status

You can also change the selection of the desired controller and the corresponding firmware

status after the project has been created.

• Open the “Project, Properties” menu.

• Select the “PLCnext Targets” option.

• Remove controllers or add new controllers and their firmware version.

• Click the “Finish” button.

You can not start creating the program.

6.2.4 Creating a program

To create a C++ program using Eclipse
®

, which can be imported as a library into

PLCnext Engineer, you must first prepare a new project in accordance with the description

in Section 6.2.3 “Creating a new C++ project in Eclipse®“.
162 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
The created project has a defined structure in which the C++ program is created.

Figure 6-10 shows an example.

Figure 6-10 Example structure of a C++ project

To create a program, proceed as follows:

• Open the *.cpp source file.

• Program the code to be executed during each ESM task cycle in the “Execute()” func-

tion (see comment //TODO implement program).

For additional information on programming in C++, please refer to Section “Structure of a

C++ program” on page 116.

After instantiation of a program, the assigned ESM task calls the Execute() function of the

program instance in each cycle.

6.2.5 Compiling the project

• Switch to the “Project Explorer” to compile the project.

• Right-click to open the context menu for the project folder

(in the example: “FirstProject1”).

Example projects and the associated documentation can be downloaded at

https://github.com/plcnext.

Recommended: Make the following setting so that your files are saved automatically be-

fore you execute the “Build Project” option:

• In Eclipse
®

, open the “Window, Preferences” menu.

• Select “General, Workspace, Build”.

• Enable the “Save automatically before build” check box.

• Make this setting separately for each workspace.
108664_en_03 PHOENIX CONTACT 163 / 202

https://github.com/plcnext

PLCNEXT TECHNOLOGY
• In the context menu, click on the “Build Project” option or click on the button in the

tool bar.

Figure 6-11 “Build Project”

Successful compilation of the project or possible error messages are displayed on the “Con-

sole” tab.

Figure 6-12 Example: “Console”

Note regarding compiler warning

For each defined port, you receive the compiler warning:

offsetof within non-standard-layout type.

E.g.: [cmake]: /home/user/Workspace/Counters/intermediate/code/Counters
Library.meta.cpp:22:47: warning: offsetof within non-standard-layout
type ‘Counters::CppRetain’ is undefined [-Winvalid-offsetof]

You can ignore this warning in conjunction with your defined ports or suppress it using the

-Wno-invalid-offsetof CMake parameter.
164 / 202 PHOENIX CONTACT 108664_en_03

Creating programs with C++
Successful compilation If compilation was successful, a shared object (*.so) is generated.

Generating a

PLCnext Engineer library

To be able to use the program in PLCnext Engineer, you need the pcwlx library, which was

generated during compilation. The Library Builder automatically generates the pcwlx library

within the framework of compilation (“Build Project”). The files are located in the project

folder, e.g., C:/Users/<username>/eclipse-workspace/FirstProject1/Bin. Import the library

within PLCnext Engineer and assign the programs to a task (see Section 9, “Importing li-

braries into PLCnext Engineer”).

6.3 Remote debugging

PLCnext Technology has an integrated GDB server. You have the option of setting up a re-

mote debugging session using Eclipse
®

.

A description on how to set up a remote debugging session for a running process is avail-

able in the PLCnext Community.
108664_en_03 PHOENIX CONTACT 165 / 202

https://plcnext-community.net/index.php?option=com_content&view=article&id=178:remote-debugging-attach-to-process&catid=48&Itemid=274&lang=en

PLCNEXT TECHNOLOGY
7 Creating function blocks and functions with C#

The Visual Studio
®

 extension is an extension for the integrated development environment

Microsoft
®

 Visual Studio
®

. The extension allows for using Visual Studio
®

 for the develop-

ment of eCLR firmware libraries in C# and implementing them on PLCnext Technology de-

vices. Furthermore, you can debug the C# code on PLCnext Technology devices.

ProConOS embedded CLR is the open IEC 61131 control runtime system for different au-

tomation tasks. The eCLR programming system is structured as follows:

Figure 7-1 Structure of the eCLR programming system

Additional

information

In addition to the information in the following sections, further information is available in the

online help “eCLR Programming Reference” and the “Readme.txt” text file. Both the online

help and the text file are available in every eCLR project in Visual Studio
®

.

Figure 7-2 “eCLR-Programming-Reference.chm” and “Readme.txt”

The eCLR programming system consists of the following components:
166 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
CIL compiler The CIL compiler is responsible for translating the CIL code (CIL = Common Intermediate

Language). The eCLR CIL compiler is an ahead-of-time compiler. This means that the CIL

code has been fully translated for the platform before being transferred to the controller

(more importantly, before execution). This fulfills an essential requirement for the real-time

capability of the system. The functional scope of the CIL compiler enables the use of many

C # language elements and namespaces of the Base Class Library, which are listed in Sec-

tion “C# language functions” on page 178.

eCLR core libraries The core libraries consist of eCLR base class libraries (mscorlib.dll, System.dll, Sys-

tem.Core.dll) and some eCLR-specific libraries (eclrlib.dll, pcoslib.dll). The eCLR base

class libraries implement the .NET Framework class libraries. An overview of the supported

functions is available in Section “eCLR Base Class Libraries Reference” of the “eCLR Pro-

gramming Reference” online help (see “Additional information” on page 166).

eCLR runtime The eCLR runtime executes the compiled IL code on the controller. The runtime is respon-

sible for object and memory management, metadata processing (e.g., for debugging), as

well as for the transition of managed API calls to native implementation specific to the oper-

ating system. An overview of the eCLR runtime is available in Section “eCLR runtime func-

tions” on page 181.

7.1 Installing the Visual Studio
®

 extension

7.1.1 System requirements

• Before starting the installation, ensure that the system requirements are met and down-

load the necessary software.

Operating system

– Microsoft
®

 Windows
®

 7

– Microsoft
®

 Windows
®

 8.1

– Microsoft
®

 Windows
®

 10

Phoenix Contact software

– PLCnext Engineer (Order No. 1046008):

To use the libraries created with C# for PLCnext Technology devices, you need the engi-

neering software platform for automation controllers.

– PLCnext Technology controller with eCLR as of version 2019.0 LTS (e.g., AXC F 2152)

– Visual Studio
®

 extension installer

The Visual Studio
®

 extension (tools for Visual Studio 2015 for PLCnext Technology C# pro-

gramming) are available in the download area of your controller or the PLCnext Engineer

software (Order No. 1046008) at phoenixcontact.net/products.

C# development environment

– Microsoft
®

 Visual Studio
®

 2015 and 2017

Versions: Enterprise, Pro, Community
108664_en_03 PHOENIX CONTACT 167 / 202

http://www.phoenixcontact.net/products

PLCNEXT TECHNOLOGY
7.1.2 Installation

You need the Microsoft
®

 Visual Studio
®

 development environment for programming in C#.

The Phoenix Contact extension available for Visual Studio
®

 makes it easy to use C# pro-

grams in the PLCnext Technology context.

Installing the

Visual Studio
®

extension

• To install the Visual Studio
®

 extension, run the Windows installation program of the

Visual Studio
®

 extension.

This adds the project and element templates and the debug module to Visual Studio
®

.

• Check if installation was successful by opening the “Tools, Extensions and Updates”

menu in the Visual Studio
®

 development environment.

If the extensions have been successfully installed, they are displayed as shown in

Figure 7-3:

Figure 7-3 “Extensions and Updates” menu

Uninstalling the

Visual Studio
®

extension

If you want to uninstall the Visual Studio
®

 extension, proceed as follows:

• Run the Windows installation program of the Visual Studio
®

 extension.

• In the next dialog, select “Remove”.

You can also use the Windows
®

 “Programs and Features” menu to uninstall the

Visual Studio
®

 extension.

• Select the extension from the list.

• Click on “Uninstall”.
168 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
7.2 Creating a firmware library

With Visual Studio
®

 you can create functions and function blocks in C#, which you can sub-

sequently import using the PLCnext Engineer software, and use on a PLCnext Technology

device. You first have to create a new project. To do this, proceed as follows:

• In Visual Studio
®

, open the “File, New, Project...” menu.

• In the dialog that opens, select “Installed, Templates, Visual C#, PLCnext”.

• Select the “Firmware Library” eCLR template from the list.

• Select a storage path and click on “OK”.

A new, empty eCLR library project is created.

Figure 7-4 Creating a new PLCnext library project
108664_en_03 PHOENIX CONTACT 169 / 202

PLCNEXT TECHNOLOGY
• Open the “Project, Add New Item” menu.

• In the dialog that opens, select “Installed, Visual C# Items, eCLR”.

• Select the “Function Block” or “Function” element from the list.

• Click on “Add”.

⇒ By doing so you create a new template for a function or a function block.

Figure 7-5 Adding a “Function Block”

• When you create a function, select a return value in the following dialog.

Figure 7-6 Adding a new “Function” element: selecting a return value

“Kind of Return Value”:

“By Reference” is recommended for complex data types, and is mandatory for generic data

types (ANY).

• Create your function block or function in the template.

• Observe the comments in the template.
170 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
• Create the entire project by pressing <F6>. Depending on your configuration, a *.pcwlx

library is created in the release or debug directory of the project.

Figure 7-7 Example: eCLR function block template

• Also observe the information in the “Known Issues and Constraints” section of the on-

line help (see “Additional information” on page 166).
108664_en_03 PHOENIX CONTACT 171 / 202

PLCNEXT TECHNOLOGY
7.3 Remote debugging of C# code with Visual Studio
®

Because PLCnext Technology includes an implementation of eCLR, you have the option to

establish a C# remote session. The following sections describe the basic steps needed for

setting up a remote debug session and establishing a direct connection to a running appli-

cation by means of Visual Studio
®

.

Software used

– PuTTY

– WinSCP

– Microsoft
®

 Visual Studio
®

 2015 and 2017

– Visual Studio
®

extension

7.3.1 Disabling user authentication

Currently, the C# debugging function does not feature an interface for logging on to the con-

troller. To debug the C# code, you have to deactivate the user authentication in WBM (web-

based management) of the controller.

For additional information, please refer to Section 3.9.1 on page 82.

• Deactivate user authentication of your controller via WBM.

Figure 7-8 Example WBM for AXC F 2152: Deactivating user authentication

NOTE: Risk of damage to equipment

If safety functions are switched off, the controller must not be used for live operation.

Using the debugging function can result in an unsafe process interruption.

• Ensure that there is no risk of damage to the equipment or personal injury.

Please note:

– The following description is based on the default settings. Consider all changes made

by the user.

NOTE: Risk of damage to equipment

If safety functions are switched off, the controller must not be used for live operation.
172 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
7.3.2 Opening a port and deactivating TLS (Transport Layer Se-

curity)

Currently, C# debugging via a secure communication connection is not supported. For this

reason, another port has to be opened for communication with the controller. TLS (Trans-

port Layer Security) has to be deactivated on this port.

• Open WinSCP.

• Establish a connection to the IP address of the controller and a user with root rights (see

Section 2.14.7, “Root rights”).

Figure 7-9 Establishing a connection

• Open the /etc/plcnext/device/System/RscGateway/ folder.

• Open the “RscGateway.settings” file.

Figure 7-10 “RscGateway” directory with “RscGateway.settings” file

• Scroll to the line with the “TcpGatewaySettings”.
108664_en_03 PHOENIX CONTACT 173 / 202

PLCNEXT TECHNOLOGY
• Insert the line

<TcpGatewaySettings gatewayId=”0” tcpPort="41101”
sessionTimeout="300000” encrypted="false” />

as shown in the figure below:

Figure 7-11 “RscGateway.settings”

• Save and close the file.

• Restart the controller.

7.3.3 Debug mode

Creating/opening a proj-

ect

• Create a new project in Visual Studio
®

. Set it up.

• Follow the operating instructions in Section “Creating a firmware library” on page 169

Or

• Open an existing project

Importing a library in

PLCnext Engineer

• Import the library in PLCnext Engineer (see Section “Importing libraries into

PLCnext Engineer” on page 184).

Activating debug mode To activate debug mode, proceed as follows:

• Connect PLCnext Engineer to the controller. Additional information on

PLCnext Engineer is available in the online help and in the quick start guide. The quick

start guide can be downloaded at phoenixcontact.net/products.

• In the “PLANT” area, right-click on the controller.
174 / 202 PHOENIX CONTACT 108664_en_03

http://www.phoenixcontact.net/products

Creating function blocks and functions with C#
• In the context menu, select “Debug On/Off”.

Figure 7-12 Activating debug mode in PLCnext Engineer

Attaching Visual Studio
®

to the process

• In Visual Studio
®

 open the “Debug, Attach to Process...” menu.

• From the “Transport” drop-down list, select the “eCLR Device” entry.

• Click on the “Find...” button.

• In the “Attach to eCLR” dialog that opens, enter the IP address of the controller (e.g.,

192.168.1.10:41101) and port number 41101.

• Select the image under the following path:

“c:\users\Public\Documents\PLCnext Engineer\Version\Binaries\PROJECT1@binary\

eCLR\”.
108664_en_03 PHOENIX CONTACT 175 / 202

PLCNEXT TECHNOLOGY
A shortcut to this path is available in the “Select Image File” dialog. It can be found under

“Microsoft Visual Studio 2015”, “Binaries”.

Figure 7-13 Attaching Visual Studio
®

 to the process

• Select the image currently running on the controller.

• Confirm your selection with “OK”.

• Click on the “Attach” button.

• Then add breakpoints in Visual Studio.
176 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
Execution of the code is stopped at the breakpoint. You can now evaluate the current vari-

able values.

Figure 7-14 Setting breakpoints in Visual Studio

• Use the functions in Visual Studio to jump to the next breakpoint or continue processing

of the code.

Figure 7-15 Continuing code processing or jumping to the next breakpoint

If you want to make changes to the code within the framework of debugging, you have to

disconnect the process connection (“Detach“):
108664_en_03 PHOENIX CONTACT 177 / 202

PLCNEXT TECHNOLOGY
• In Visual Studio, select the “Debug, Detach All” menu.

Figure 7-16 Visual Studio
®

 - “Detach All”

• Make changes to the code and save them.

• Recompile the project. To do so, open the “Build, Rebuild Project name” menu.

• Then, switch to PLCnext Engineer.

• PLCnext Engineer recognizes the change. Save the change.

• Transfer the project to the controller.

• Then, reconnect Visual Studio to the process (see Section “Attaching Visual Studio®

to the process” on page 175).

For information on the debug functions in PLCnext Engineer and in

Microsoft Visual Studio
®

, please refer to the associated documentation.

7.4 Supported functions of the PLCnext Technology

C# programming system

7.4.1 C# language functions

Types

All the integrated types are supported with the exception of decimal.

Type system

– Namespaces, structs, classes, interfaces, enumerations, nested types

– Indexers, properties, operations

– Events, delegates, MultiCastDelegates

– Arrays

– Constructors, static constructors, destructors (finalizers)

– Boxing, unboxing, static casts

If the inputs/outputs have been changed, errors might occur in PLCnext Engineer. If nec-

essary, correct them in PLCnext Engineer.
178 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
– Nullable

Polymorphy

– Virtual mechanism (virtual, overwrite, abstract)

– Dynamic casts (as)

Modifiers and keywords

– public, internal, protected, private

– readonly, const, sealed, unsafe

– params, ref, out

– base, this

– explicit, implicit, operator

Operators

– new, sizeof, typeof, as, is

– All unary operators

– All binary operators

– Prefix, postfix and conditional operator

– Cast and index operator

Control structures and statements

– if, else

– switch, case, default (also on strings)

– for, do, while, foreach, break, continue

– goto, return

– using, fixed

– lock

Exceptions

– throw

– try, catch, finally

For additional information, please refer to Section “Known issues and constraints” on

page 181.

7.4.2 Base class libraries

Below you will find a list of the most important classes that have been implemented in the

eCLR base class library, separated by namespaces. A complete list of the implemented

classes with additional information is available in Section “eCLR Base Class Libraries Ref-

erence” of the “eCLR-Programming-Reference.chm” online help (see “Additional informa-

tion” on page 166).

System

All integrated types, as well as the following:

– Char, Boolean, Int32, Single, etc., with the exception of decimal

– All common exception types
108664_en_03 PHOENIX CONTACT 179 / 202

PLCNEXT TECHNOLOGY
– Common interfaces such as:

IDisposable, IComparable, ICloneable, IFormatProvider, IFormattable

– String, array, object, valuetype

– Version, DateTime, TimeSpan, TimeZone

– BitConverter, Convert

– GC

– Console

– Uri, UriBuilder

System.Collections

– IEnumerator, IEnumerable, ICollection, IList, IDictionary, IComparer

– ArrayList, Hashtable, Queue

– Comparer, DictionaryEntry

System.Collections.Generic

– IEnumerator<T>, IEnumerable<T>, ICollection<T>, ICollection<T>, IList<T>,

IDictionary<TKey,TValue>, IComparer<T>

– Dictionary<TKey,TValue>, List<T>, Queue<T>

– Comparer<T>, KeyValuePair<TKey,TValue>

System.Globalization

– Calendar, CalendarWeekRule

– CultureInfo

Supported cultures: de-DE, en-US, en-GB, Invariant

Types that support the localized formatting/parsing: all number types, DateTime, Time-

Span

– DateTimeFormatInfo, NumberFormatInfo, NumberStyles, DateTimeStyles

System.IO

– Path, File

– Stream, FileStream, MemoryStream

– BinaryReader, BinaryWriter

– TextReader, TextWriter, StreamReader, StreamWriter, StringReader, StringWriter

System.Security.Cryptography

– CryptoConfig

– HashAlgorithm, MD5, MD5CryptoServiceProvider

System.Text

– StringBuilder

– Encoding, ASCIIEncoding, UTF8Encoding, UnicodeEncoding (big endian and little en-

dian)

System.Threading

– Thread, ThreadPool, ThreadStart, ThreadState

– Monitor (lock)

– WaitHandle, EventWaitHandle, AutoResetEvent, ManualResetEvent, WaitCallback
180 / 202 PHOENIX CONTACT 108664_en_03

Creating function blocks and functions with C#
– Timer, TimerCallback

System.Net

– IPAdress, IPEndpoint, Endpoint, SocketAddress

– WebClient, HttpWebRequest, HttpWebResponse

System.Net.Sockets

– NetworkStream

– AddressFamily, ProtocolType

– Socket, SocketType

7.4.3 eCLR runtime functions

Garbage collection

Memory management is performed by the eCLR. The garbage collector should explicitly

only be called at a specific point in time (application of GC.Collect).

Implicit finalization

The finalizer of each applicable .NET class (implementing ~T()) is called when teh garbage

collector releases the instance. The garbage collector collect function is called automati-

cally. The time of the implicit call cannot be predicted.

Implicit initialization

All the integrated types and value types (struct) are implicitly initialized with their default val-

ues. Reference type instances are implicitly initialized with the value “zero”.

Debug support

– Defining breakpoints

– Evaluation of instance values and local variables, as well as arguments from the current

method

– Providing call stack information

Known issues and constraints

For detailed information, please refer to Section “Known Issues and Constraints” of the

Visual Studio
®

 extension online help (see “Additional information” on page 166).
108664_en_03 PHOENIX CONTACT 181 / 202

PLCNEXT TECHNOLOGY
7.5 Supported data types

The following table illustrates how the IEC 61131-3 data types are linked to the .Net Frame-

work and C#. Variables of data types that are marked with a “+” in the “Attribute data type”

column must have the optional “DataType” attribute for unique assignment.

Table 7-1 Supported IEC 61131-3, .Net Framework, and C# data types

IEC 61131-3 .Net Framework C# Attribute data type

BOOL System.Boolean bool -

SINT System.SByte sbyte -

INT System.Int16 short -

DINT System.Int32 int -

LINT System.Int64 long -

USINT System.Byte byte -

UINT System.UInt16 ushort -

UDINT System.UInt32 uint -

ULINT System.UInt64 ulong -

REAL System.Single float -

LREAL System.Double double -

TIME System.UInt32 uint +

LTIME System.Int64 long +

LDATE System.Int64 long +

LTOD System.Int64 long +

LDT System.Int64 long +

BYTE System.Byte byte +

WORD System.UInt16 ushort +

DWORD System.UInt32 uint +

LWORD System.UInt64 ulong +

STRING System.Iec61131Lib.

IecStringEx

-

ANY System.Iec61131Lib.Any +

ANY_MAGNITUDE System.Iec61131Lib.Any +

ANY_NUM System.Iec61131Lib.Any +

ANY_INT System.Iec61131Lib.Any +

ANY_SIGNED System.Iec61131Lib.Any +

ANY_UNSIGNED System.Iec61131Lib.Any +

ANY_REAL System.Iec61131Lib.Any +

ANY_BIT System.Iec61131Lib.Any +

ANY_ELEMEN-

TARY

System.Iec61131Lib.Any +
182 / 202 PHOENIX CONTACT 108664_en_03

Matlab® Simulink®

108664_en_03 PHOENIX CONTACT 183 / 202

8 Matlab
®

 Simulink
®

Matlab
®

 Simulink
®

 is a software program for the model-based development of dynamic

systems.

The “PC Worx Target for Simulink” software add-on (Order No. 2400041) enables the con-

version of Simulink
®

 models into device-specific code for use with Remote Field und Axio-

line controllers. The models converted from Simulink
®

 can be integrated into the PC Worx

and PLCnext Engineer development environments.

The model-based design and versatile simulation possibilities of Simulink
®

 can therefore

also be used for automation projects within PLCnext Technology. A structured model imple-

mentation can be ensured, thanks to the automatic creation of executable code. The import

and configuration options in PLCnext Engineer also enable Simulink
®

 models to be oper-

ated together with programs that have been created in IEC 61131-3 languages or C++. The

combination with other high-level-language programs in the same task and execution in the

real-time context is therefore also possible for Simulink
®

 models. Furthermore, you can also

implement monitoring of model parameters, and optimization of the models during execu-

tion via “external mode”.

For additional information on the add-on and its use, please refer to:

– PC Worx Target for Simulink product page (Order No. 2400041):

phoenixcontact.com/webcode/#1955

– Tutorial videos in the PLCnext Community:

plcnext-community.net/index.php?option=com_content&view=category&lay-

out=blog&id=71&Itemid=339&lang=en

http://www.phoenixcontact.com/webcode/#1955
https://www.plcnext-community.net/index.php?option=com_content&view=category&layout=blog&id=71&Itemid=339&lang=en
https://www.plcnext-community.net/index.php?option=com_content&view=category&layout=blog&id=71&Itemid=339&lang=en

PLCNEXT TECHNOLOGY
9 Importing libraries into PLCnext Engineer

Once you have generated a *.pcwlx library from a C++ or C# library, import this library into

the PLCnext Engineer software. In PLCnext Engineer, imported libraries are treated as an

ICE 61131-3 program or as a function or function block, and are processed in tasks.

To import a library into PLCnext Engineer, proceed as follows:

• Open your PLCnext Engineer project or create a new AXC F 2152 template.

• In the “COMPONENTS” area, click on “References”.

• Right-click on “Libraries”.

Adding a library • Right-click to open the “Add Library” context menu.

Figure 9-1 “Add library” context menu

• In the dialog that opens, select the desired *.pcwlx library.

• Click on “Open”.

The component and program or the function or function block are now available in the

“COMPONENTS” area under “Libraries”.

Figure 9-2 PLCnext Engineer - Libraries

You will find additional information on PLCnext Engineer in the online help and the quick

start guide (PLCNEXT ENGINEER, Order No. 1046008).
184 / 202 PHOENIX CONTACT 108664_en_03

Importing libraries into PLCnext Engineer
Adding functions/function

blocks

The library is now a part of the PLCnext Engineer project. The POUs (Program Organization

Units) contained therein can be used in the project, for example in the FBD (Function Block

Diagram).

• Open the “Main” code worksheet via the “COMPONENTS” area.

• Open the “Code” program editor.

• Add the new C# function block by dragging it from the “COMPONENTS” area under “Li-

braries” to your code worksheet.

Figure 9-3 Inserting a function block

Assigning inputs/outputs Additional information is available in the Readme.txt file (see “Additional information” on

page 166).

Instantiating a program To instantiate a program contained in a library, proceed as follows:

• In the “PLANT” area, select the “PLCnext” node.
108664_en_03 PHOENIX CONTACT 185 / 202

PLCNEXT TECHNOLOGY
• Open the “Tasks and Events” editor.

Figure 9-4 Opening the “Tasks and Events” editor

• In the editor, create a new task or open an existing task.

• Drag and drop the program from the “COMPONENTS” area to the “Name” column be-

low the desired tasks. This way you generate a program instance.

Figure 9-5 Example: CPP_Counter_P1 program instance in the “Task and Event” edi-

tor

The programs in the “COMPONENTS” area are displayed at different locations, depending

on the programming language they were written in.

– Programs that were created in IEC 61131 can be found under “Programming”. A dis-

tinction is made between:

– “Local, Programs”: Programs from the same project are located here.

– “Library name”: Programs from an IEC 61131 library are located here.

– Programs that were created in C++ or Matlab
®

 Simulink
®

 are located under “PLCnext

Components & Programs”, “Library name”, “Component name”.

– Functions and function blocks created with C# are located under “PLCnextBase”.
186 / 202 PHOENIX CONTACT 108664_en_03

Importing libraries into PLCnext Engineer
Figure 9-6 Programs, function blocks and functions in PLCnext Engineer

Assigning IN/OUT ports • In the “PLANT” area, select the “PLCnext” node.

• Open the “Data List” editor.

In the “Data List” editor, all IN and OUT ports saved to the GDS of the controller are dis-

played. The IN and OUT ports of the newly instantiated program are displayed. To use the

IN/OUT ports of the imported library, you must assign the IN and OUT ports of the imported

libraries to the IN and OUT ports of other program instances so that consistent data ex-

change can take place.

Assigning an IN port to an

OUT port

• To assign an IN port to an OUT port, click on “Select IN Port here” in the “IN Port” col-

umn.
108664_en_03 PHOENIX CONTACT 187 / 202

PLCNEXT TECHNOLOGY
The role picker opens. Only the IN ports that you can actually assign to the respective OUT

port are displayed in the role picker.

• Select the IN port that you want to assign to the relevant OUT port in the role picker.

• The IN port is assigned to the OUT port.

• Proceed as described for other IN ports.

Assigning several IN ports

to an OUT port

• Assign an IN port to an OUT port as described in the previous section.

• To assign further IN ports to an OUT port, you have to duplicate the OUT port.

• Right-click on the OUT port and select the “Duplicate Output Port” option in the context

menu.

Figure 9-7 Duplicating an output port

• To assign an IN port to the duplicated OUT port, proceed as described in the previous

section.

Assigning an OUT port to

an IN port

• To assign an OUT port to an IN port, click on “Select OUT Port here” in the “OUT Port”

column.

The role picker opens. Only the OUT ports that you can actually assign to the respective IN

port are displayed in the role picker.

• Select the OUT port that you want to assign to the relevant IN port in the role picker.

The OUT port is assigned to the IN port.

• Proceed as described for other OUT ports.
188 / 202 PHOENIX CONTACT 108664_en_03

Importing libraries into PLCnext Engineer
• Observe the instructions in Section 2.8.5 “Supported data types“.

Figure 9-8 “Data List” editor

Once you have assigned all IN and OUT ports to be used, transfer the PLCnext Engineer

project to the controller. Additional information on PLCnext Engineer is available in the on-

line help, the quick start guide (PLCNEXT ENGINEER, Order No. 1046008) and the user

manual for the AXC F 2152 controller (Order no. 2404267).
108664_en_03 PHOENIX CONTACT 189 / 202

PLCNEXT TECHNOLOGY
190 / 202 PHOENIX CONTACT 108664_en_03

Appendix
A Appendix

A 1 Available data types

Table A-1 Available data types

Bits C# IEC 61131 FDCML C++ OPC UA

1 BOOL BOOL Bit/BOOL Boolean Boolean

16 UInt16 WORD Bitstring16 uint16 UInt16

32 UInt32 DWORD Bitstring32 uint32 UInt32

64 UInt64 LWORD Bitstring64 uint64 UInt64

8 Byte BYTE Bitstring8 uint8 Byte

8 Byte BYTE BYTE uint8 Byte

32 Int32 DINT DINT int32 Int32

32 UInt32 DWORD DWORD uint32 UInt32

32 Single REAL Float32 float32 Float

64 Double LREAL Float64 float64 Double

16 Int16 INT INT int16 Int16

64 Int64 LDATE LDATE int64 *

64 Int64 LDATE_AND_-

TIME

LDATE_AND_-

TIME

int64 *

64 Int64 LDT LDT int64 *

64 Int64 LINT LINT int64 Int64

64 Double LREAL LREAL float64 Double

64 Int64 LTIME LTIME int64 *

64 Int64 LTIME_OF_DAY LTIME_OF_DAY int64 *

64 Int64 LTOD LTOD int64 *

64 UInt64 LWORD LWORD uint64 UInt64

8 Byte BYTE Octetstring1 uint8 Byte

16 UInt16 WORD Octetstring2 uint16 UInt16

32 UInt32 DWORD Octetstring4 uint32 UInt32

64 UInt64 LWORD Octetstring8 uint64 UInt64

32 Single REAL REAL float32 Float

16 Int16 INT Signed16 int16 Int16

32 Int32 DINT Signed32 int32 Int32

64 Int64 LINT Signed64 int64 Int64

8 SByte SINT Signed8 int8 SByte

8 SByte SINT SINT int8 SByte

n*8 String STRING StringASCII StaticString *

32 Int32 TIME TIME int32 *
108664_en_03 PHOENIX CONTACT 191 / 202

PLCNEXT TECHNOLOGY
* Not yet implemented

32 UInt32 UDINT UDINT uint32 UInt32

16 UInt16 UINT UINT uint16 UInt16

64 UInt64 ULINT ULINT uint64 UInt64

16 UInt16 UINT Unsigned16 uint16 UInt16

32 UInt32 UDINT Unsigned32 uint32 UInt32

64 UInt64 ULINT Unsigned64 uint64 UInt64

8 Byte USINT Unsigned8 uint8 Byte

8 Byte USINT USINT uint8 Byte

16 UInt16 WORD WORD uint16 UInt16

Table A-1 Available data types

Bits C# IEC 61131 FDCML C++ OPC UA
192 / 202 PHOENIX CONTACT 108664_en_03

PLCnext Technology naming conventions
A 2 PLCnext Technology naming conventions

When designating PLCnext Technology components, please observe the following con-

ventions. Correct functioning can only be ensured if you adhere to the following specifica-

tions.

A 2.1 GDS ports

A designation

– May not start with a number.

– May not be empty.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

– May not start or end with “.”.

– May contain “.”.

– May start or end with “_”.

XML restriction <xs:pattern value=“([_a-zA-Z]+)([0-9a-zA-Z\-\[\]_.]*)([0-
9a-zA-Z\[\]_]+)“ />

A 2.2 Library, components and program

A designation

– May not start with a number.

– May not contain “.”.

– May not be empty.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

– Has to start with a capital letter

XML restriction <xs:pattern value=“([a-zA-Z]+)([0-9a-zA-Z\-]*)([0-9a-zA-
Z]+)“ />

A 2.3 Program instances

A designation

– May not start with a number.

– May not be empty.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

XML restriction <xs:pattern value=“([a-zA-Z]+)([0-9a-zA-Z\-]*)([0-9a-zA-
Z]+)“ />
108664_en_03 PHOENIX CONTACT 193 / 202

PLCNEXT TECHNOLOGY
A 2.4 Component instances

A designation

– May not start with a number.

– May not be empty.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

XML restriction <xs:pattern value="([a-zA-Z]+)([0-9a-zA-Z\-]*)([0-9a-zA-
Z]+)" />

A 2.5 Processes

A designation

– Has to be unique.

– May not contain “.”.

– May not start with a number.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

XML restriction <xs:pattern value="|([a-zA-Z]+)([0-9a-zA-Z\-]*)([0-9a-zA-
Z]+)" />

A 2.6 Tasks

A designation

– May not start with a number.

– May not be empty.

– Must consist of at least two characters.

– May not exceed 128 characters.

– May not contain spaces or tabulators.

XML restriction <xs:pattern value="([a-zA-Z]+)([0-9a-zA-Z\-]*)([0-9a-zA-
Z]+)" />

A 2.7 Namespaces

A designation

– May not contain spaces.

– May not end with “++”.

– Should not contain “_”.
194 / 202 PHOENIX CONTACT 108664_en_03

Explanation of terms
A 3 Explanation of terms

ACF  Application Control Framework

Application Control

Framework

The ACF is a central part of the PLCnext Technology system architecture. It enables com-

ponent-based platform development as well as expandability and configurability of the en-

tire system.

 Section 5.5 “ACF (Application Component Framework)”

API  Application Programming Interface

Application Programming

Interface

An API is an interface that enables the connection of programs to a software system.

ARP  Automation Runtime Platform

Automation Runtime Plat-

form

In the PLCnext Technology firmware, ARP is used as the root name for namespaces.

CLI  Command Line Interface

See PLCnCLI

Component  Component

Common classes Common classes are useful classes for operating system functions, e.g., threads, sockets,

chrono, etc. The PLCnext Technology common classes are provided via the

Phoenix Contact SDK.

Connector A connector connects an IN port to an OUT port. An OUT port can be connected to several

IN ports. One connector is used for each connection. A connector can execute additional

tasks such as byte swapping, type casts or bit masking.

Core component  Core components

CRL  Certificate Revocation List

Data sink A data sink is the location where data is received and stored.

Debugging Localization and diagnostics of errors in programs. The debug mode provides different

functions that support the user during the function test of the program as well as during error

localization and diagnostics (e.g., setting of breakpoints).

Real-time user program PLC program that can be programmed in IEC 61131-3, C++, or Matlab
®

 Simulink
®

.

eCLR ProConOS embedded CLR is the open IEC 61131 control runtime system for different au-

tomation tasks.

ESM  Execution and Synchronization Manager

ESM task  Task
108664_en_03 PHOENIX CONTACT 195 / 202

PLCNEXT TECHNOLOGY
Execution and Synchroni-

zation Manager

The Execution and Synchronization Manager is used for real-time task handling. It performs

task handling, monitoring and chronological sequencing of programs from different pro-

gramming languages and enables program execution in a real-time context.

 Section 2.7 “ESM (Execution and Synchronization Manager)” on page 21

External user components An external user component is a component that is created by the user. It is not processed

within the PLCnext framework but directly under Linux.

GDS  Global Data Space

GDS buffer storage units A GDS buffer storage unit is a memory area used for buffering and transferring data be-

tween ESM tasks. It serves as a data exchange area between IN and OUT ports.

Global Data Space The GDS is the central point for storing all the data that is exchanged between the pro-

grams. Data exchange is implemented via IN and OUT ports that the user can link. The GDS

enables communication relationships and data exchange between tasks and programs that

were created in different programming languages. The GDS also ensures that each task al-

ways uses consistent values.

 Section 2.8 “GDS (Global Data Space)” on page 27

Hot restart All variable values are retained when the controller is started.

IdentityStore The IdentityStore is an identity memory for PLCnext Technology devices. It contains au-

thentication tools, e.g., key pairs, certificates, etc.

IN port  Port

Internal user component Internal user components are components created by the user. These components do not

run in the real-time context of the PLCnext Technology platform. They extend the range of

functions of the PLCnext Technology platform.

Cold restart When the controller is started, all variables are started with their initialization values. Exist-

ing data is reset.

Core components The core components form the core function of the PLCnext Technology. They are part of

the firmware and contain the following components:

– Service components (e.g., ESM, system manager, PLC manager, eCLR, etc.)

– System components (e.g., OPC UA server, WBM, etc.)

– I/O components (e.g., fieldbus manager)

– Middleware (e.g., GDS, RSC, common classes, etc.)

Component A component is a collection of functions. It may contain one or more programs as well as IN

and OUT ports.

Middleware  Core components

Notification Notifications are messages that can be sent and received by components to point out spe-

cial events. They are identified via a name and can transport user data.

Notification manager The notification manager enables components to send and receive notifications. It accepts

messages from a sender and forwards them to the registered recipient.

User data User data (payload) is information data in data packets. It does not contain control or proto-

col information.
196 / 202 PHOENIX CONTACT 108664_en_03

Explanation of terms
NTP Network Time Protocol

NTP is a protocol for time synchronization in IT systems.

OPC UA server Open Platform Communications Unified Architecture

OPC UA is a standardized protocol for industrial machine-to-machine communication. Ex-

change of process data, variable values, read and write access to file systems, etc. between

OPC UA server and clients is implemented via the protocol.

OUT port  Port

Payload  User data

PC Worx Engineer Engineering software platform for Phoenix Contact automation controllers. PC Worx Engi-

neer complies with IEC 61131-3 and its functions can be expanded using add-ins. The soft-

ware was called PC Worx Engineer up to version 7.2.3. As of version 2019.0 LTS, the soft-

ware is called PLCnext Engineer.

PLC manager The PLC manager is part of the PLCnext Technology firmware. It manages the real-time

programs of the PLC and starts and stops them.

PLCnCLI  PLCnext Command Line Interface

The PLCnCLI is a command-line interface. It can be used for generating metafiles, C++

header files, for adding IN and OUT ports and generating PLCnext Engineer libraries, for ex-

ample.

PLCnext Community Information platform for PLCnext Technology users with a connected forum for direct con-

tact with PLCnext Technology experts.

See plcnext-community.net.

PLCnext Engineer Engineering software platform for Phoenix Contact automation controllers.

PLCnext Engineer is IEC 61131-3-compliant and its functions can be extended using add-

ins.

PLCnext Store The PLCnext Store is a trade platform for the sale of apps for PLCnext controllers

(PLCnext Engineer libraries, programs, solution apps, etc.).

PLCnext Technology PLCnext Technology is the basis of the new, open control platform from Phoenix Contact.

This new technology enables users to work with various well-established software tools at

the same time, including Visual Studio
®

, Eclipse
®

, Matlab
®

 Simulink
®

, and

PLCnext Engineer. In addition, it facilitates writing of program code in IEC 61131-3 as well

as in C++ or C#. Additional functions from third-party manufacturers or the open-source

community can be added to the Phoenix Contact automation system, merging into one

complete system.

PLM  Program Library Manager

POU  Program Organization Unit (POU)

Collective term for the terms “function”, “function block”, and “program” defined in

IEC 61131-3. They are used for modularizing and structuring the PLC program.

Program Library Manager The PLM is part of the PLC manager. The PLM manages components providing user pro-

grams.
108664_en_03 PHOENIX CONTACT 197 / 202

http://www.plcnext-community.net

PLCNEXT TECHNOLOGY
PROFICLOUD PROFICLOUD is the cloud solution from Phoenix Contact. Locally or globally distributed

network devices and even the functions of an industrial PROFINET network can simply and

securely be moved to the cloud with PROFICLOUD. Performance data can be accessed

rapidly from sites anywhere in the world.

Port Data between programs is exchanged via the IN and OUT ports. To establish a communi-

cation relationship between the programs, IN and OUT ports have to be connected via con-

nectors.

Regular expressions Regex: Character string for describing quantities of character strings using syntactic rules.

Resource-global variables According to IEC 61131-3, resource-global variables can be used in all Program Organiza-

tion Units (POU) of the current resource.

Remote service call Remote service calls are services for the communication between processes and between

devices. They provide the API to enable access to all core components of the

PLCnext Technology firmware.

RSC  Remote service call

SDK  Software Development Kit

Service components  Core components

Service manager The service manager is used to request registered RSC services (components of the SDK)

and integrate them into the process.

SFTP Secure File Transfer Protocol

Shared object A shared object file (*.so) corresponds to a dynamic library (also called shared libraries). It

is downloaded from the firmware to the memory during runtime. Then, the functions in-

cluded can be called. In PLCnext Technology, a shared object file contains the code for the

components and programs to be executed and which where created in C++ or

Matlab
®

 Simulink
®.

Software Development Kit The Phoenix Contact SDK contains important toolchains and libraries required for creating

programs.

PLC Programmable logic controller

SSH Secure shell

System components  Core components

System manager The system manager loads and configures the system components and monitors the sta-

bility of the system.

Task A task is a configuration unit for the execution of program instances (e.g., cyclic execution

at fixed intervals).

The following task types are available:

– Cyclic task

– Idle task

– System event task
198 / 202 PHOENIX CONTACT 108664_en_03

Explanation of terms
Task output data At the end of its execution, a task makes its calculated output data available to other tasks

via a buffer storage unit. The task output data is the sum of all OUT port variables that are

connected to buffer storage units of I/O systems or to IN ports of program instances in other

tasks.

Task input data When being started, a task actively consumes data from the task output buffer storage units

of other tasks, or from the buffer storage units of I/O systems. All user programs within a task

therefore use the same input data during the entire task runtime. The consistent input data

image is only updated with the next start of the task.

TSD Time-Series Data

User manager The user manager manages the different users. Each user has a name and a password.

One or several user roles are assigned to each user.

User program The user creates the user programs in IEC 61131-3, C++, or with Matlab
®

 Simulink
®

. They

are processed in real-time context via the ESM. Through integration into the ESM, a

user program becomes real-time-capable. Connection to the data exchange area of the

GDS is implemented via IN and OUT ports.

VPN Virtual Private Network

Warm restart All variable values marked with “Retain” in PLCnext Engineer are retained when the control-

ler is started.

WBM  Web-based management

Web-based management You can call web-based management via the web browser of your PC. WBM is used to re-

ceive information about the controller and to configure it (e.g., managing access data and

user roles).
108664_en_03 PHOENIX CONTACT 199 / 202

PLCNEXT TECHNOLOGY
A 4 PROFINET diagnostic code in WBM

The “PROFINET” page in the WBM “Diagnostics” area of your controller is used to view in-

formation about the controller and the connected PROFINET devices, as well as informa-

tion about their Axioline F local bus devices. The displayed diagnostic code consists of sev-

eral bits that are evaluated individually. The diagnostic state (OK, warning, error) as well as

the corresponding diagnostic text are based on an evaluation of the diagnostic bits. The fol-

lowing section is an excerpt from the “AutomationRuntimePlatform/Source/Arp/Io/Profinet-

Stack/Controller/Services/DiagnosticInfo.hpp” firmware file. It contains the bit description of

the diagnostic code:

/// <summary>
 /// Special status of this AR, bitwise coded.
 /// - Bit 0: set if not connected
 /// - Bit 1: set if data invalid
 /// - Bit 2: set if diagnosis is available
 /// - Bit 3: set if module difference is available in case of configuration difference
 /// - Bit 4: set if AR is deactivated
 /// - Bit 5: set if neighborhood information is not available
 /// - Bit 6: neighborhood information not unique
 /// - Bit 7 - Identify.cnf on alias received, but name of the device is already configured in

another AR
 /// - Bit 8: Maintenance Required Information is available
 /// - Bit 9: Maintenance Demanded Information is available
 /// - Bit 10: Channel or Manufacturer Specific Diagnosis Information are available
 /// - Bit 11..15: reserved (shall be 0)
 /// </summary>
200 / 202 PHOENIX CONTACT 108664_en_03

Please observe the following notes

General terms and conditions of use for technical documentation

Phoenix Contact reserves the right to alter, correct, and/or improve the technical

documentation and the products described in the technical documentation at its own

discretion and without giving prior notice, insofar as this is reasonable for the user. The

same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular user documentation) does not

constitute any further duty on the part of Phoenix Contact to furnish information on

modifications to products and/or technical documentation. You are responsible to verify the

suitability and intended use of the products in your specific application, in particular with

regard to observing the applicable standards and regulations. All information made

available in the technical data is supplied without any accompanying guarantee, whether

expressly mentioned, implied or tacitly assumed.

In general, the provisions of the current standard Terms and Conditions of Phoenix Contact

apply exclusively, in particular as concerns any warranty liability.

This manual, including all illustrations contained herein, is copyright protected. Any

changes to the contents or the publication of extracts of this document is prohibited.

Phoenix Contact reserves the right to register its own intellectual property rights for the

product identifications of Phoenix Contact products that are used here. Registration of such

intellectual property rights by third parties is prohibited.

Other product identifications may be afforded legal protection, even where they may not be

indicated as such.
PHOENIX CONTACT 201 / 202

202
How to contact us

Internet Up-to-date information on Phoenix Contact products and our Terms and Conditions can be

found on the Internet at:

phoenixcontact.com

Make sure you always use the latest documentation.

It can be downloaded at:

phoenixcontact.net/products

Subsidiaries If there are any problems that cannot be solved using the documentation, please contact

your Phoenix Contact subsidiary.

Subsidiary contact information is available at phoenixcontact.com.

Published by PHOENIX CONTACT GmbH & Co. KG

Flachsmarktstraße 8

32825 Blomberg

GERMANY

PHOENIX CONTACT Development and Manufacturing, Inc.

586 Fulling Mill Road

Middletown, PA 17057

USA

Should you have any suggestions or recommendations for improvement of the contents and

layout of our manuals, please send your comments to:

tecdoc@phoenixcontact.com
PHOENIX CONTACT GmbH & Co. KG • Flachsmarktstraße 8 • 32825 Blomberg • Germany

phoenixcontact.com

202 / 202

http://phoenixcontact.com
http://phoenixcontact.net/products
http://phoenixcontact.com

PHOENIX CONTACT GmbH & Co. KG

Flachsmarktstraße 8

32825 Blomberg, Germany

Phone: +49 5235 3-00

Fax: +49 5235 3-41200

E-mail: info@phoenixcontact.com

phoenixcontact.com

©
 P

H
O

E
N

IX
 C

O
N

T
A

C
T

 2
0
1
9
-0

7
-3

1
1
0
8
6
6
4
_
en

_
0
3

O
rd

er
 N

o
.
—

0
3

	Table of contents
	1 General information
	1.1 Identification of warning notes
	1.2 Qualification of users
	1.3 Introduction
	1.4 Information about this document
	1.5 Trademarks/licensing information
	1.6 Safety notes
	1.7 PLCnext Technology product range

	2 Structure of PLCnext Technology
	2.1 Internal user components
	2.2 External user components
	2.3 System manager
	2.4 PLC manager
	2.5 Managing of components
	2.6 Configuration files
	2.6.1 acf, esm, gds configuration files
	2.6.2 .tic file
	2.6.3 Metafiles
	2.6.4 Generating configuration files with PLCnext Engineer
	2.6.5 Manual configuration

	2.7 ESM (Execution and Synchronization Manager)
	2.7.1 Task configuration with PLCnext Engineer
	2.7.2 Task configuration via configuration files

	2.8 GDS (Global Data Space)
	2.8.1 Port-based communication
	2.8.2 Fieldbus connection
	2.8.3 GDS configuration with PLCnext Engineer
	2.8.4 GDS configuration using configuration files
	2.8.5 Supported data types

	2.9 RSC (Remote Service Calls)
	2.10 PLCnext embedded OPC UA server (eUA)
	2.10.1 OPC UA
	2.10.2 Configuration
	2.10.3 OPC UA file access
	2.10.4 Alarms
	2.10.5 Subscriptions
	2.10.6 “GlobalDataSpace” namespace
	2.10.7 Device Integration (DI) namespace
	2.10.8 Data types
	2.10.9 UA server endpoints
	2.10.10 Encryption algorithms
	2.10.11 Ethernet ports at the controller
	2.10.12 Disabling user authentication

	2.11 Alarms
	2.11.1 IEC 61131 alarm function blocks
	2.11.2 Alarms in C++ programs
	2.11.3 OPC UA server

	2.12 Notification manager
	2.12.1 Notifications of the PLCnext Technology firmware

	2.13 Notification logger
	2.13.1 Displaying notifications in the PLCnext Engineer cockpit
	2.13.2 Receiving notifications
	2.13.3 Configuring the notification logger
	2.13.4 Saving notifications
	2.13.5 Querying notifications
	2.13.6 Permissions

	2.14 Operating system
	2.14.1 Directories of the firmware components in the file system
	2.14.2 System time
	2.14.3 OpenVPN™ client
	2.14.4 IPsec (strongSwan)
	2.14.5 Text editors
	2.14.6 User rights
	2.14.7 Root rights
	2.14.8 Linux scripts of the PLCnext Technology firmware

	3 Web-based management (WBM)
	3.1 Establishing a connection to WBM
	3.2 Licensing information on open source software
	3.3 Changing the language
	3.4 Login
	3.5 Start page – areas and functions
	3.6 “Information” area
	3.6.1 “General Data” page

	3.7 “Diagnostics” area
	3.7.1 “PROFINET” page

	3.8 “Configuration” area
	3.8.1 “PROFICLOUD” page

	3.9 “Security” area
	3.9.1 “User Authentication” page
	3.9.2 “Certificate Authentication” page
	3.9.3 “Firewall” page

	3.10 “Administration” area
	3.10.1 “Firmware Update” page

	4 Transferring variable values to the PROFICLOUD
	4.1 Creating variables as OUT ports
	4.2 Preparing the controller for PROFICLOUD
	4.3 Configuring PROFICLOUD
	4.4 Displaying an overview of the PROFICLOUD device metrics
	4.5 Displaying the metrics graphically in Grafana

	5 Structure of a C++ program
	5.1 “ILibrary” and “LibraryBase”
	5.2 “IComponent” and “ComponentBase”
	5.2.1 “IProgramComponent” and “IProgramProvider”
	5.2.2 “IProgram” and “ProgramBase”
	5.2.3 “IControllerComponent”

	5.3 Several component types in the same library
	5.4 PLM (Program Library Manager)
	5.4.1 Functions
	5.4.2 Configuration

	5.5 ACF (Application Component Framework)
	5.5.1 Libraries
	5.5.2 Components
	5.5.3 Configuration

	5.6 Common classes
	5.6.1 Threading
	5.6.2 “Ipc” (inter-process communication)
	5.6.3 “Chrono”
	5.6.4 “Io”
	5.6.5 “Net”
	5.6.6 “Runtime”

	5.7 “Template Loggable”
	5.8 Using RSC services
	5.8.1 RSC Axioline services
	5.8.2 RSC PROFINET services
	5.8.3 RSC device interface services
	5.8.4 RSC GDS services

	5.9 Notifications

	6 Creating programs with C++
	6.1 PLCnCLI (PLCnext Command Line Interface)
	6.1.1 System requirements
	6.1.2 Installing PLCnCLI
	6.1.3 Installing SDKs
	6.1.4 Functions of the PLCnCLI

	6.2 Eclipse® add-in
	6.2.1 Requirements
	6.2.2 Installing/updating/uninstalling the Eclipse® add-in
	6.2.3 Creating a new C++ project in Eclipse®
	6.2.4 Creating a program
	6.2.5 Compiling the project

	6.3 Remote debugging

	7 Creating function blocks and functions with C#
	7.1 Installing the Visual Studio® extension
	7.1.1 System requirements
	7.1.2 Installation

	7.2 Creating a firmware library
	7.3 Remote debugging of C# code with Visual Studio®
	7.3.1 Disabling user authentication
	7.3.2 Opening a port and deactivating TLS (Transport Layer Security)
	7.3.3 Debug mode

	7.4 Supported functions of the PLCnext Technology C# programming system
	7.4.1 C# language functions
	7.4.2 Base class libraries
	7.4.3 eCLR runtime functions

	7.5 Supported data types

	8 Matlab® Simulink®
	9 Importing libraries into PLCnext Engineer
	A Appendix
	A 1 Available data types
	A 2 PLCnext Technology naming conventions
	A 3 Explanation of terms
	A 4 PROFINET diagnostic code in WBM

	Please observe the following notes
	How to contact us

